DOI QR코드

DOI QR Code

Molecular Modeling of Complexation Behavior of p-tert-Butylcalix[5]arene Derivative toward Butylammonium Ions

  • Published : 2002.01.20

Abstract

Using several molecular modeling programs we have performed computer simulations to investigate the complexation behaviors of an ester derivative of p-tert-butylcalix[5]arene (1e) toward a variety of butylammonium ions. Semi-empirical AM1 method was used for calculating the binding energies and the formation enthalpies. MM and CVFF forcefields for molecular mechanics calculations were adapted to express the complexation energies of the host. Molecular dynamics were performed to the calculated complex systems to simulate the ionophoric behavior of the host-guest complexes. The absolute Gibbs free energies of the host (1e) complexed with four kinds of butylammonium ions have been calculated using the Finite Difference Thermodynamic Integration (FDTI) method in Discover. Calculation results show that the trend in complex formation is n-$BuNH_3^+$ > iso-$BuNH_3^+$ >> sec-$BuNH_3^+$ > tert-$BuNH_3^+$, which is in good agreement with the experimental results.

Keywords

References

  1. Gutsche, C. D. Calixarenes Revisited; The Royal Society of Chemistry: Cambridge, 1998
  2. Balzani, V.; De Cola L. Supramolecular Chemistry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992
  3. Molecular Recognition: Chemical and Biochemical Problems; Roberts, S. M., Ed.; The Proceedings of an International Symposium, Royal Society of Chemistry, Dorset Press: Dorset, Great Britain, 1989
  4. Fages, F.; Desvergne, J.-P.; Kampke, K.; Bouas-Laurent, H.; Lehn, J.-M.; Meyer, M.; Albrecht-Gary, A.-M. J. Am. Chem. Soc. 1993, 115, 3658 https://doi.org/10.1021/ja00062a034
  5. Chang, S.-K.; Hwang, H.-S.; Son, H.; Youk, J.; Kang, Y. S. J. Chem. Soc., Chem. Commun. 1991, 217.
  6. Chang, S.-K.; Jang, M.; Han, S. Y.; Lee, J. H.; Kang, M. H.; No, K. T. Chem. Lett. 1992, 1937.
  7. Han, S. Y.; Kang, M.-H.; Jung, Y. E.; Chang, S.-K. J. Chem. Soc., Perkin Trans. 2 1994, 835.
  8. Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Nature 1996, 382, 522. https://doi.org/10.1038/382522a0
  9. Odashima, K.; Yagi, K.; Tohda, K.; Umezawa, Y. Anal. Chem. 1993, 65, 1074. https://doi.org/10.1021/ac00056a022
  10. Arnecke, R.; Bohmer, V.; Cacciapaglia, R.; Cort, A. D.; Mandolini, L. Tetrahedron 1997, 53, 4901. https://doi.org/10.1016/S0040-4020(97)00185-3
  11. Sussman, J. L.; Harsei, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Science 1991, 253, 872 https://doi.org/10.1126/science.1678899
  12. Diederich, F. Cyclophanes; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, 1991.
  13. Kearney, P. C.; Misoue, L. S.; Kumpf, R. A.; Forman, J. F.; McCurdy, A.; Dougherty, D. A. J. Am. Chem. Soc. 1993, 115, 9907. https://doi.org/10.1021/ja00075a006
  14. Pappalardo, S.; Parisi, M. F. J. Org. Chem. 1996, 61, 8724 https://doi.org/10.1021/jo9615108
  15. Arnaud-Neu, F.; Fuangswasdi, S.; Notti, A.; Pappalardo, S.; Parisi, M. Angew. Chem. Int. Ed. 1998, 37, 112 https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<112::AID-ANIE112>3.0.CO;2-O
  16. Lee, J. Y.; Lee, S. J.; Choi, H. S.; Cho, S. J.; Kim, K. S.; Ha, T. K. Chem. Phys. Lett. 1995, 232, 67. https://doi.org/10.1016/0009-2614(94)01330-X
  17. Kim, K. S.; Lee, J. Y.; Lee, S. J.; Ha, T. K.; Kim, D. H. J. Am. Chem. Soc. 1994, 116, 7399. https://doi.org/10.1021/ja00095a050
  18. Choi, H. S.; Cho, S. J.; Kim, K. S. Proc. Natl. Acad. Sci. 1998, 95, 12094. https://doi.org/10.1073/pnas.95.21.12094
  19. Kim, K. S.; Cui, C.; Cho, S. J. J. Phys. Chem. 1998, 102, 461.
  20. Cho, S. J.; Hwang, H.; Park, J.; Oh, K.S.; Kim, K. S. J. Am. Chem. Soc. 1996, 118, 485. https://doi.org/10.1021/ja953242l
  21. Kim, K. S.; Lee, J. Y.; Tarakeshwar, P. Chem. Rev. 2000, 100, 4145 https://doi.org/10.1021/cr990051i
  22. Oh, K. S.; Lee, C.-W.; Choi, H. S.; Lee, S. J.; Kim, K. S. Org. Lett. 2000, 2, 2679 https://doi.org/10.1021/ol000159g
  23. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 200
  24. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465 https://doi.org/10.1007/BF02705436
  25. Choe, J.-I.; Chang, S.-K.; Ham, S. W.; Nanbu, S.; Aoyagi, M. Bull. Korean Chem. Soc. 2001, 22, 1248
  26. Stewart, D. R.; Krawiec, M.; Kashyap, R. P.; Watson, W. H.; Gutsche, C. D. J. Am. Chem. Soc. 1995, 117, 586 https://doi.org/10.1021/ja00107a002
  27. HyperChem Release 4.5; Hypercube, Inc.: Waterloo, Ontario, Canada, 1995
  28. Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph 177, American Chemical Society; Washington, D.C., 1982.
  29. MM3: Molecular Mechanics 3; Allinger, N. L.; Yuh, Y. H.; Lii, J.-H. J. Am. Chem. Soc. 1989, 111, 8551. https://doi.org/10.1021/ja00205a001
  30. Discover Users Guide; Biosym Technologies (presently merged to MSI): San Diego, 1993
  31. Singh, U. C.; Brown, F. K.; Bash, P. A.; Kollman, P. A. J. Am. Chem. Soc. 1987, 109, 1607. https://doi.org/10.1021/ja00240a001
  32. McCammon, J. A. Science 1987, 238, 486. https://doi.org/10.1126/science.3310236
  33. Kollman, P. In Molecular Recognition: Chemical and Biochemical Problems; Roberts, S. M., Ed.; Royal Society of Chemistry: Great Britain, 1989.
  34. Lybrand, T. P. "Computer Simulation of Biomolecular Systems Using Molecular Dynamics and Free Energy Perturbation Methods" in Reviews in Computational Chemistry; Lipkowitz K. B.; Boyd, D. B., Eds.; VCH Publishers: New York, 1990.
  35. Bayly, C. I.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 697. https://doi.org/10.1021/ja00081a034
  36. Hwang, S.; Jang, Y. H.; Ryu, G. H.; Chung, D. S. Bull. Korean Chem. Soc. 1999, 20, 1129.

Cited by

  1. Ab Initio Study of the Complexation Behavior of Calix[5]arene Derivative toward Alkyl Ammonium Cations vol.24, pp.1, 2002, https://doi.org/10.5012/bkcs.2003.24.1.075
  2. The Homodimerization of Thalictrum tuberosum O-Methyltransferases by Homology-based Modelling vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1256
  3. Ab Initio Study of the Complexation Behavior of p-tert-Butylcalix[5]arene Derivative toward Alkyl Ammonium Cations vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.190
  4. Structure of p-Phenylcalix[5]arene Dichloroform Solvate vol.26, pp.2, 2005, https://doi.org/10.5012/bkcs.2005.26.2.337
  5. Acceleration of Thiol Ester Hydrolysis by Cyclodextrins: Evidence from Rate and Computational Studies vol.2006, pp.4, 2002, https://doi.org/10.1002/ejoc.200500770
  6. Regioselective monobromination of substituted phenols in the presence of β-cyclodextrin vol.63, pp.23, 2002, https://doi.org/10.1016/j.tet.2007.03.137
  7. DFT Conformational Study of Calix[5]arene and Calix[4]arene: Hydrogen Bond vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1893
  8. A DFT study on a calix[5]crown-based heteroditopic receptor vol.22, pp.6, 2002, https://doi.org/10.1080/10610271003678529