Free Radical Acylation Approach of Carbohydrate Derivatives ${ }^{\text {s }}$

Won-jin Chung, Gee-Ho Jeon, ${ }^{\dagger}$ Joo-Yong Yoon, ${ }^{\ddagger}$ and Sunggak Kim ${ }^{*}$
Center for Molecular Design \& Smonesis and Department of Chemistry, School of Molecular Science, Lorea 1 dhanced Institute of Science and Technologv, Daejeon 305-701. Korea
$\mathrm{C} \& \mathrm{C}$ Research Labs. Simon 44-480. Korea
${ }^{\ddagger}$ LG Life Science, Ltd. Daejeon 305-380. Korea Recemed February 26. 2002

Key Words : Radical reaction, Acylation. Carbohydrate, Sulfonyl oxime ether
('-Gly cosides have been the subject of considerable interest in carbohydrate chemistry because many carbohydrate derivatives exhibit very interesting biological activities such as antitumor activity and inhibitors of metabolic processes. ${ }^{1}$ Thus. a modification of carbohydrates vit carbon-carbon bond fomation receives increasing attention among synthetic organic chemists and also provides valuable synthons suitable for the synthesis of complex molecules since carbohydrate derivatives contain a large number of chiral centers and functional groups. ${ }^{2}$ In view of the synthetic importance of carbohydrate derivatives, a variety of synthetic methods for the preparation of various carbohydrate derivatives have been reported. ${ }^{3}$
Free radical addition to multiple bonds is recognized as a powerful means for carbon-carbon bond formation. ${ }^{4}$ Radicalmediated approaches have special advantages for the synthesis of carbohydrate derivatives due to mild reaction conditions and tolerance of a wide range of functional groups. However. as compared with radical cyclizations. intermolecular addition reactions have rather limited use due to the relatively slow rate of the addition and several competing reactions. Thus, highly efficient radical acceptors are normally required and two approaches involving additions to activated olefins and fragmentation reactions are generally useful. Giese utilized addition of glycosyl radical to activated olefins." whereas Keck employed reliable radical ally lation reactions for the synthesis of C-glycosides. ${ }^{6}$ Recently, vinylphosphonates were also employed for the diastereoselective synthesis of C-glycosylphosphonates. ${ }^{7}$ Furthermore. free radical-mediated glycosylations generally involve threecarbon extensions and only two reports appeared for radicalmediated one-carbon extensions. ${ }^{\text {* }}$

We reported highly efficient radical acylation approaches of alkyl iodides using sulfonyl oxime ether derivatives. ${ }^{\text {. }}$ Since this approach is very useful to introduce not only acyl groups but also amino-alkyl groups. ${ }^{\text {li }}$ we have stidied radical acylation reactions of several carbohydrate derivatives. First. (-glycosylation of α-D-glycopyranosyl bromides (1a. 1b) was briefly examined with phenylsulfonyl oxime ether 2. Treatment of $1 \mathbf{a}$ with 2 (2.0 equiv) and $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.5 equiv) using AIBN as initiator in refluxing benzene for 6 h under a

[^0]
high diluted condition afforded the axial C-glycopyranoside 3a in 66% yield along with a mixture of the direct reduction product + and the rearranged product 5 , apparently resulting from the 1,2 -acyloxyl migration in pyranoyl radicals. ${ }^{11}$ In order to prevent the direct reduction by $\mathrm{Bu}_{2} \mathrm{SinH}_{\text {, the reaction }}$ was carried out with hexamethylditin in benzene at 300 mm for 8 h . Under photochemically initiated conditions (300 $\mathrm{nm})$. much better results were obtained. yielding 3a $\left(J_{1.2}=\right.$ 6.2 Hz) in 83% yield. ${ }^{12}$ A similar result was also obtained with 1b under the similar conditions, yielding $\mathbf{3 b}\left(J_{1.2}=5.7\right.$ $\mathrm{Hz})^{13}$ in 88% yield. The preference for the fommation of $\alpha-$ linked C-glycoprranosides has been well known and is attributed to better stability and higher nucleophilicity of the axial σ-radical over the equatorial σ-radical in glucose derivatives. ${ }^{14}$

We next studied the synthesis of several (-branched glycosides and prepared methyl 4.6-O-benzylidene-2-deoxy-2-iodo- α-D-altropyranoside (6), methyl 4.6-O-benzy lidene-3-deosy-3-iodo- α-D-altropyranoside, (9) and methyl 3.4-di-O-benzoyl-2.6-dideoxy-6-iodo-a-D-altropyranoside (11) by

10 (89\%)

the known procedures. ${ }^{15}$ When 6 was treated with 2 and hexamethyldition in beneene at 300 nm for 4 h . a $2: 1$ mixture of $C(2)$-branched glycoside 7^{16} and 8^{17} was oblained in 6% vield. The ratio of two isomers was determined by ${ }^{1} \mathrm{H}$ NMR spectral data $\left(J_{1,2}=0.74 \mathrm{~Hz}\right.$ for $7 . J_{1,2}=3.92 \mathrm{~Hz}$ for 8$)$. The stercochemical course of the reaction was governed by steric effects of the vicinal substituents. indicating that the axial attack was somewhat favored over the equatorial attack by sulfonyl oxime ether $\mathbf{2}$. Reaction of $\mathbf{9}$ with $\mathbf{2}$ under the same conditions provided C(3)-branched glycoside 10 in 89% yield without the formation of the direct reduction product. The reaction was clean and stercosclective. yiclding the equatorial isomer. probably duc to 1.3 -diaxial interaction for the axial isomer. For the synthesis of $C(6)$ chain-extended glycoside derivative. when $\mathbf{1 1}$ was subjected to the standard conditions. 12 was isolated in 98% yicld.
In conclusion. we have developed a highly efficicnt method for one carbon extended diastercoselective glycosidation of glycopyranosides. The present method is also applicable to the symthesis of $($ - -branched glycosides.

Acknowledgment. We thank CMDS and BK21 project for financial suppori.

References and Notes

1. (a) J3rimatombe J. S. Ingew (hem. Int. Fd. 1969, 6. 4th. (b) Grisebach. 11: Schmid, R. Ingew. (hem. Int. Kd. 1972, H. 159.
2. (a) Janessian, S. lece (hem. Res 1979, I2, 159. (b) Hanessian, S Total Symhesis of Nahmal Products: The (Thiron Approactr: Pergamon Press: Oxtord. 1983.
3. For a revicw: sce: Postema. M. H. D. Tetrahedron 1992. 48.8545.
4. (a) Curran. 1). P. Sthitessis 1988. 489. (b) Radicals in Organic Symhesis, Vol I, Remaud, P.: Sibi, M. P., Jids.: Wilev-VCII: Weitrheim, Germany, 2001: Vol. 1.
5. (a) Giesc. B.: Dupuis. J. Angew. (hem. Int. Ed. 1983. 22.633. (b) Kita. Y:: Gotanda. K.: Sano. A.: Oka. M.: Murata. K.: Suemura. M.: Matsugi. M. Tefrahedrof Leht. 1997. 38. 8345.
6. (a) Keek, G.: Yales, J. B. J. Im. Chem. Soc. 1982, 104. 5829 . (b) Keek, G.: lEnholm, li. J.: Yates, J. 13:, Wiley, M. R. Fetrahedrom 1985.47 .4679 .
7. Junker. H.-D.: Fessner. W.-D. Tetrahedrof Lett. 1998. 39. 269.
8. (a) Hart. D. J.: Scely. F. L. J. Am. (trem. Soc. 1988. 110. 1631. (b)

Gupta. V.: Kahne. D. Tetrahe drom Leff. 1993. 34. 591
9. (a) Kim, S.: Iee I. Y.: Yoon J.Y.: Oh, I). H. J. Ith. (hem. Soc 1996. HS. 5138. (b) Kim. S.: Yoon J.-Y.: I.ex. I. Y. Syhlett 1997. 475. (c) Kim. S.: Yoon, J.-Y.J. ith (heth. Soc. 1997.119. 5982.
10. (a) Fener. H.: Vineent. B. F.: Bartlett. R. S. J. (hrg. (hmm. 1965. 30. 2877. (b) Feuer. H.: Braunstein. D. M. J. Org. (hem. 1969. 3t. 1817. (c) Itsuno. S.: Tanaka. K.: Ito. K. (hem. Leff. 1986. 1133.
11. (a) Korth, I1.-(..: Sustmann, R. J. Org. (hem. 1988. 53. 4.764. (b) Koch. A.: Iamberth. C: Wetterich. l'.: Giese, B. J. Org. Chem. 1993. 58. 1083.
12. A benzenc (1 mL) solution of 1 a (95 mg . 0.23 mmol). 2 (127 mg . 0.46 mmol) and hexamethylditin (90 kL .0 .27 mmol) in quartz tube was degassed with nitrogen gas for 20 minn. The solution was irradiated at 300 mm in Ravonet photochemical reactor for 8 h . The reacion mixture was diluled with ethy acetate and quenched with potassium flooride and a lew drops of water. The mixture was stirred at room temperature for 1 h and then tiltered over siliea gel. The tiltrate was coneentrated under reduced pressure. The residue was chromatographed on silica gel using n-hewane:cthyl acetate $-3: 1$ solution as eluent to give $3 \mathrm{a}\left(89 \mathrm{mg}, 83^{\circ}{ }^{\circ}\right.$). ${ }^{1} I I N M R$

 $-4.5 \mathrm{~Hz}) .4 .91$ (dd. 1H. H-6. $\left.J_{560}-2.3 \mathrm{~Hz} . J_{\mathrm{ix} .5 \mathrm{~b}}-12.4 \mathrm{~Hz}\right) .4 .15$ (dd. $1 \mathrm{H} . \mathrm{H}-6 . J_{5.51}-4.5 \mathrm{~Hz} . J_{\mathrm{cctab}}-12.4 \mathrm{~Hz}$). 4.82 (dd. $1 \mathrm{H} . \mathrm{H}-\mathrm{I}$. $J_{1.2}-6.2 \mathrm{~Hz} . J-6.2 \mathrm{~Hz}$). 5.00 (dd. $1 \mathrm{H} . \mathrm{H}-4 . J_{3.1}-9.6 \mathrm{~Hz} . J_{6}:-$ 9.6 II.$)$. 5.09 (dd. III. II-2. $\left.J_{1,2}-6.2 \mathrm{II} \% J_{2,3}-9.6 \mathrm{HL}\right)$). $5.12(\mathrm{~s}$. $2 \mathrm{II}) .5 .42\left(\mathrm{dd}, 1 \mathrm{II}, \mathrm{II}-3 . J_{2.3}-9.6 \mathrm{HE} . J_{3.4}-9.6 \mathrm{HI}\right) .7 .26-7.36(\mathrm{~m}$
 20.43 .20 .55 .20 .60 .20 .65 .61 .84 .68 .46 .69 .48 .70 .09 .70 .54 (2C). 76.57. 128.04. 128.40. 128.58. 137.01. 143.62. 169.39. 169.58. 169.93. 170.56: IR (NaCl) 3065. 3032. 2956. 2365. 2344.1752. 1654. 1497, 1455, 1436, 1369, 1228, 1098, 1038, 957, 909, 741, $701.648,601,561.516,484 \mathrm{~cm}^{-1}$
 $3 \mathrm{H}) .2 .07(\mathrm{~s} .3 \mathrm{H}) .4 .02(\mathrm{~m} .2 \mathrm{H} . \mathrm{H}-6) .4 .06-4.10\left(\mathrm{ddd} .1 \mathrm{H} . \mathrm{H}-5 . J_{4.5}\right.$ $\left.-1.7 \mathrm{~Hz} . J_{5,3}-5.7 \mathrm{~Hz} . J_{5, \pi}-7.0 \mathrm{~Hz}\right) .4 .84$ (dd. $1 \mathrm{H} . \mathrm{H}-1 . J_{1,2}-$ $5.7 \mathrm{~Hz} . J-5.7 \mathrm{~Hz}) .5 .97(\mathrm{~s} .2 \mathrm{H}) .5 .23$ (dd. $1 \mathrm{H} . \mathrm{H}-3 . J_{2,3}-10.4 \mathrm{~Hz}$. $\left.J_{3.1}-3.2 \mathrm{II}\right) .5 .29\left(\mathrm{dd}\right.$ IHI H $\left.-2 . J_{1.2}-5.7 \mathrm{HE} \% J_{2.3}-10.4 \mathrm{IF}\right)$) $5.35\left(\mathrm{dd} .1 \mathrm{HI}, \mathrm{HI}-4, J_{3.4}-3.2 \mathrm{HI}, J_{4.5}-1.7 \mathrm{HI}\right) .7 .24-7.3 \mathrm{I}(\mathrm{m} .5 \mathrm{H})$. 7.50 (d. 1HI,$j-5.7 \mathrm{IIz}){ }^{13} \mathrm{C}$ NMR (CI)Cll. 300 MII$) \delta 20.48$. 20.53. 20.56. 20.61. 61.51. 67.05. 67.67. 68.16. 69.51. 70.28. 76.50. 128.03. 128.39. 128.49. 137.01. 143.84. 169.75. 169.80. 170.02. 170.31: IR (NaCl) 3063. 3031. 2937. 2434. 1750. 1496. 1455. 1434. 1371, 1227, 1054, 1170. I1199, 1054. 94.3.909. 825. 738. $700.6013,553.473 \mathrm{~cm}^{-1}$
14. (a) Gogo. H.: He, W.: Waki. Y.: Yokohama, M. Syhte't 1998. 700 and references cited therein. (b) Giese. B.: Dupuis. J.: Lcising. M.: Niм. M.: Lindner. H. J. C'arbohod: Ress 1987. 171. 329.
15. (a) Richards. G. N. J. (7hem. Soc. 1954. 4511. (b) Richards. G. N.: Wiggins. I. I'.: Wise, W. S. J. (hem Soc. 1956. 496. (c) Wiggins. I. I. Wethods in C'arbohydr Chem. 1963, 2, 188. (d) Furstner. A.: Weidmann, II.J. Org (hem. 1989, 54. 2307.
16. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .200 \mathrm{MHz}\right) \delta 3.03-3.09$ (m. 2 H). 3.42 (s. 3 H). $3.61-3.73$ (m. 2H). 4.14-4.32 (m. 3H). 4.81 (s. 1H). 5.09 (s. 2H). $5.50(\mathrm{~s} .1 \mathrm{H}) .7 .30-7.38$ (m. 8 H$) .7 .42$ (d. $1 \mathrm{H} . J-5.16 \mathrm{~Hz}$). $7.45-$ $7.50(\mathrm{~m}, 2 \mathrm{I})$: ${ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{CIXC}, 75 \mathrm{MIF}) \delta 46.3 .55 .7 .58 .2,67.4$. $69.2,76.2,76.4,76.7,78.2,99.8,102.2 .126 .2,128.0 .128 .1$, $128.3,128.4,128.5,129,1,137.2,1.37 .3,146.8$
17. ${ }^{1} \mathrm{HNMR}$ (CDCI $\left.\mathrm{CD}_{2} 209 \mathrm{MHz}\right) \delta 2.75-2.82(\mathrm{~m} .1 \mathrm{H}) .2 .92(\mathrm{~d} .1 \mathrm{H} . ~ d-$ $6.85 \mathrm{~Hz}) .3 .39(\mathrm{~s} .3 \mathrm{H}) .3 .57(\mathrm{dd} .1 \mathrm{H} . J-2.79 \mathrm{~Hz} . J-9.49 \mathrm{~Hz})$. $3.77(\mathrm{t} .1 \mathrm{H} . J-9.89 \mathrm{~Hz}) .4 .15-4.22(\mathrm{~m} 2 \mathrm{H}) .4 .27-4.38(\mathrm{~m} .1 \mathrm{H})$.
 8II), $7.44-7.50(\mathrm{~m}, 2 \mathrm{H}) .7 .65(\mathrm{~d}, 1 \mathrm{H}, ~ J-7.74 \mathrm{H} \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\mathrm{ClOCl}_{3}, 75 \mathrm{MIF}$) $\delta 40.8,44.5,56.1,57.8,57.9 .66 .6,67.9,69.2$, 75.9. 76.3. 77.2. 79.0. 79.2. 98.6. 100.5. 102.10. 102.11. 126.2. 126.3. 127.0. 127.7. 127.9. 128.0. 128.2. 128.3. 128.4. 128.5. 128.6. 129.2. 137.1. 137.4. 137.5. 146.7. 148.2 ($E . Z$ isomer mixture).

[^0]: Dedicated to the late Prof. Sang Chul Shim for his outstanding contribulions to organic chemistry.

