DOI QR코드

DOI QR Code

Preparation and Reconstitution of Core-shell Type Nanoparticles of Poly(ε -caprolactone)/Poly(ethyleneglycol)/Poly(ε -caprolactone) Triblock Copolymers


Abstract

One of the improtant characteristics of core-shell type nanoparticles is the long-term storage and reuse as an aqueous injection solution when required. For this reason, reconstruction of lyophilized core-shell type nanoparticles is considered to be essential . BAB type triblock copolymers differ from AB type diblock copolymers, which contain the A block as a hydrophilic part and the B block as a hydrophobic part. by not being easily redistributed into phosphate-buffered saline (PBS, pH 7.4, 0.1 M). Therefore, lyophilized core-shell type nanoparticles of CEC triblock copolymer were reconstituted using a somication process with a bar-type sonicator in combination with a freezing-thawing process. Soncation for 30s only resuspended CEC nanoparticles in PBS; their particle size distribution showed a monomodal pattern with narrow size distribution. The bimodal size distribution pattern and the aggregates were reduced by further sonication for 120 s but these nanoparticles showed a wide size distribution. The initial burst of drug release was increased by reconstitution process. The reconstitution of CEC core-shell type nanoparticles by freezing-thawing resulted in trimodal distribution pattern and formed aggregates, although freezing-thawing process was easier than sonication . Drug release form CEC nanoparticles prepared by freezing-thawing was slower than from the original dialysis solution. Although core-shell typenanoparticles of CEC triblock copolymers were not easily performed. Cytotoxicity testing of core-shell type nanoparticles of CEC-2 triblock copolymers containing clonazepam (CNZ) was performed using L929 cells. Cytotoxicity of CNZ was decreased by incorporation into nanoparticles.

Keywords

References

  1. Couvreur, P.; Fattal, E.; Andremont, A. Pharm. Res. 1991, 8, 1079. https://doi.org/10.1023/A:1015885814417
  2. Langer, R. Chem. Engng. Sci. 1995, 50, 4109. https://doi.org/10.1016/0009-2509(95)00226-X
  3. Leroux, J. C; Allemann, E.; Jaeghere, F. D.; Doelker, E.; Gurny, R. J. Control. Release 1996, 39, 339. https://doi.org/10.1016/0168-3659(95)00164-6
  4. Kataoka, K.; Kwon, G. S.; Yokoyama, M; Okano, T.; Sakurai, Y. J. Control. Release 1993, 24, 119. https://doi.org/10.1016/0168-3659(93)90172-2
  5. Lasic, D. D. Nature 1992, 355, 279. https://doi.org/10.1038/355279a0
  6. Vemuri, S.; Rhodes, C. T. Pharm. Acta Helv. 1995, 70, 95. https://doi.org/10.1016/0031-6865(95)00010-7
  7. Dunn, S. E.; Brindley, A.; Davis, S. S.; Davies, M. C; Ilium, L. Pharm. Res. 1994,11, 1016. https://doi.org/10.1023/A:1018939521589
  8. Gref, R.; Minamitake, Y; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. 1994, 263, 1600. https://doi.org/10.1126/science.8128245
  9. La, S. B.; Okano, T.; Kataoka, K. J. Pharm. Sci. 1996, 85, 85. https://doi.org/10.1021/js950204r
  10. Cerrai, P.; Tricoli, M.; Andruzzi, E; Pad, M.; Pad, M. Polymer 1989, 30, 338. https://doi.org/10.1016/0032-3861(89)90126-2
  11. Jeong, Y I.; Nah, J. W.; Na, H. K.; Na, K.; Kim, I. S.; Cho, C. S.; Kim, S. H. DrugDevel. Ind. Pharm. 1999, 25, 917. https://doi.org/10.1081/DDC-100102252
  12. Jeong, Y I.; Cheon, J. B.; Kim, S. PL; Nah, J. W.; Lee, Y M.; Sung, Y K.; Akaike, T.; Cho, C. S. J. Control. Release 1998, 51, 169. https://doi.org/10.1016/S0168-3659(97)00163-6
  13. Saito, R.; Ishizu, K. Polymer 1997, 38, 225. https://doi.org/10.1016/S0032-3861(96)00464-8
  14. Mortensen, K.; Pedersen, J. S. Macromolecules 1993, 26, 805. https://doi.org/10.1021/ma00056a035
  15. Mortensen, K. Macromolecules 1997, 30, 503. https://doi.org/10.1021/ma960457m
  16. Mortensen, K.; Brown, W.; Jorgensen, E. Macromolecules 1994, 27, 5654. https://doi.org/10.1021/ma00098a020
  17. Fessi, PL; Puisieux, E; Devissaguet, J. P.; Ammoury, N.; Benita, S. Int. J. Pharm. 1989, 55, R1. https://doi.org/10.1016/0378-5173(89)90281-0
  18. Pizzoferrato, A.; Ciapetti, G.; Stea, S.; Cenni, E.; Arciola, C. R.; Granchi, D.; Savarina, L. Clin. Mater. 1994,15, 173. https://doi.org/10.1016/0267-6605(94)90081-7
  19. Biological Evaluation for Medical Devices, Part 5, Tests for Cytotoxicity: in vitro Methods; ISO 10993-5, EN 30993-5, 1992.
  20. USPharmacopia XXIII; US Pharmacopeial Convention: Rockville, 1995.
  21. Cell-culture Test Methods; Brown, S. A., Ed.; ASTM: Philadelphia, 1990.
  22. British Standard Institution, Evaluation of Medical Devices for Biological Hazards Part 10; BS 5736: Part 10, 1988.
  23. Definitions in Biomsterials; Williams, D. E, Ed.; Elsevier: Amsterdam, 1987.

Cited by

  1. 유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩 vol.47, pp.5, 2002, https://doi.org/10.5012/jkcs.2003.47.5.479
  2. Reconstitution of Iron Cores in Horse Spleen and Yeast-derived Recombinant Human H- and L-chain Ferritins vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.237
  3. Fabrication and Optical Characteristics of CdS/Ag Metal-Semiconductor Composite Quantum Dots vol.25, pp.6, 2002, https://doi.org/10.5012/bkcs.2004.25.6.934