DOI QR코드

DOI QR Code

Mass Spectrometric Study of Carbon Cluster Formation in Laser Ablation of Graphite at 355 nm

  • Published : 2002.02.20

Abstract

The ablation dynamics and cluster formation of $C_n^+$ ions ejected from 355 nm laser ablation of a graphite target in vacuum are investigated using a reflectron time-of-flight (RTOF) mass spectrometer. At low laser fluence, odd-numbered cluster ions with $3{\leq}n{\leq}15$ are predominantly produced. Increasing the laser fluence shifts the maximum size distribution towards small cluster ions, implying the fragmentation of larger clusters within the hot plume. The temporal evolution of $C_n^+$ ions was measured by varying the delay time of the ion extraction pulse with respect to the laser irradiation, providing significant information on the characteristics of the ablated plume. Above a laser fluence of $0.2J/cm^2$ , large cluster ions ($n{\geq}30$) are produced at relatively long delay times, indicating that atoms or small carbon clusters aggregate during plume propagation. The dependence of the intensity of ablated $C_n^+$ ions on delay time after laser irradiation shows that the most probable velocity of each cluster ion decreases with cluster size.

Keywords

References

  1. Kroto, H. W.; Heath, R. J.; Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162 https://doi.org/10.1038/318162a0
  2. Iijima, S.; Ichihashi, T. Nature 1993, 363, 603 https://doi.org/10.1038/363603a0
  3. Lowndes, D. H.; Geohegan, D. B.; Puretzky, A. A.; Norton, D. P.; Rouleau, C. M. Science 1996, 273, 898 https://doi.org/10.1126/science.273.5277.898
  4. Smalley, R. E. Acc. Chem. Res. 1992, 25, 98 https://doi.org/10.1021/ar00015a001
  5. Bloomfield, L. A.; Geusic, M. E.; Freeman, R. R.; Brown, W. L. Chem. Phys. Lett. 1985, 121, 33 https://doi.org/10.1016/0009-2614(85)87149-9
  6. Cox, D. M.; Reichmann, K. C.; Kaldor, A. J. Chem. Phys. 1988, 88, 1588 https://doi.org/10.1063/1.454137
  7. Kaizu, K.; Kohno, M.; Suzuki, S.; Shiromaru, H.; Moriwaki, T.; Achiba, Y. J. Chem. Phys. 1997, 106, 9954 https://doi.org/10.1063/1.473883
  8. Moriwaki, T.; Kobayashi, K.; Osaka, M.; Ohara, M.; Shiromaru, H.; Achiba, Y. J. Chem. Phys. 1997, 107, 8927 https://doi.org/10.1063/1.475184
  9. Im, H.-S.; Kim, S.-H.; Choi, Y.-K.; Lee, K. H.; Jung, K.-W. Bull. Korean Chem. Soc. 1997, 18, 56
  10. Choi, Y.-K.; Im, H.-S.; Jung, K.-W. Bull. Korean Chem. Soc. 1998, 19, 830
  11. Rohlfing, E. A.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1984, 81, 3322
  12. Gaumet, J. J.; Wakisaka, A.; Shimizu, Y.; Tamori, Y. J. Chem. Soc. Faraday Trans. 1993, 89, 1667 https://doi.org/10.1039/ft9938901667
  13. Choi, Y.-K.; Im, H.-S.; Jung, K.-W. Int. J. Mass Spectrom. 1999, 189, 115 https://doi.org/10.1016/S1387-3806(99)00060-3
  14. Ramanathan, R.; Zimmerman, J. A.; Eyler, J. R. J. Chem. Phys. 1993, 98, 7838 https://doi.org/10.1063/1.464591
  15. Bach, S. B.; Eyler, J. R. J. Chem. Phys. 1989, 92, 358 https://doi.org/10.1063/1.458437
  16. Sowa-Resat, M. B.; Hintz, P. A.; Anderson, S. L. J. Phys. Chem. 1995, 99, 10736 https://doi.org/10.1021/j100027a010
  17. Kokai, F.; Koka, Y. Nucl. Instrum. & Methods B 1997, 121, 387 https://doi.org/10.1016/S0168-583X(96)00395-3
  18. Raghavachari, K.; Binkley, J. S. J. Chem. Phys. 1987, 87, 2191 https://doi.org/10.1063/1.453145
  19. Kohno, M.; Suzuki, S.; Shiromaru, H.; Moriwaki, T.; Achibe, Y. Chem. Phys. Lett. 1998, 282, 330 https://doi.org/10.1016/S0009-2614(97)01273-6
  20. Choi, Y.-K.; Im, H.-S.; Jung, K.-W. Bull. Korean Chem. Soc. 1999, 20, 1501
  21. Lade, R. J.; Ashfold, M. N. R. Surf. Coat. Technol. 1999, 120-121, 313 https://doi.org/10.1016/S0257-8972(99)00487-9
  22. Puretzky, A. A.; Geohegan, D. B.; Jellison, G. E. Jr.; McGibbon, M. M. Appl. Surf. Sci. 1996, 96, 859 https://doi.org/10.1016/0169-4332(95)00567-6
  23. Zheng, J. P.; Huang, Z. Q.; Shaw, D. T.; Kwok, H. S. Appl. Phys. Lett. 1989, 54, 280 https://doi.org/10.1063/1.101553
  24. Sankur, H.; Denatale, J.; Guming, W.; Nelson, J. G. J. Vac. Sci. Technol. A 1987, 235, 2869
  25. Sing, R.; Narayan, J. Phys. Rev. B 1990, 41, 8843 https://doi.org/10.1103/PhysRevB.41.8843

Cited by

  1. Current literature in mass spectrometry vol.37, pp.7, 2002, https://doi.org/10.1002/jms.254
  2. Laser desorption/ionization fourier transform mass spectrometry of thin films deposited on silicon by plasma polymerization of acetylene vol.21, pp.3, 2010, https://doi.org/10.1016/j.jasms.2009.11.005
  3. Difference in formation of carbon cluster cations by laser ablation of graphene and graphene oxide vol.47, pp.4, 2012, https://doi.org/10.1002/jms.2985
  4. Qualitative and quantitative analyses of copper ores collected from Baluchistan, Pakistan using LIBS and LA-TOF-MS vol.124, pp.8, 2018, https://doi.org/10.1007/s00340-018-7032-8
  5. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry vol.25, pp.1, 2004, https://doi.org/10.5012/bkcs.2004.25.1.101
  6. Optical Emission Studies of a Plume Produced by Laser Ablation of a Graphite Target in a Nitrogen Atmosphere vol.25, pp.5, 2004, https://doi.org/10.5012/bkcs.2004.25.5.620
  7. Formation of Yttrium Oxide Clusters Using Pulsed Laser Vaporization vol.26, pp.2, 2005, https://doi.org/10.5012/bkcs.2005.26.2.345
  8. Characterization of Carbon Plasma Evolution Using Laser Ablation TOF Mass Spectrometry vol.17, pp.11, 2015, https://doi.org/10.1088/1009-0630/17/11/13
  9. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials vol.27, pp.8, 2002, https://doi.org/10.1088/1555-6611/aa7cc9