DOI QR코드

DOI QR Code

Molecular Strands and Related Properties of Silver(Ⅰ) Triflate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine


Abstract

Studies on subtle spacer ligand effects of AgCF3SO3 with 3,3'-Py2X (X = O vs S) have been carried out. The reaction of AgCF3SO3 with 3,3'-Py2O and 3,3'-Py2S produces [Ag(CF3SO3)(3,3'-Py2O)] and [Ag(3,3'-Py2S)] (CF3SO3), respectively. Crystallographic characterization of [Ag(CF3SO3)(3,3'-Py2O)] (monoclinic P1, a =8.405(2) $\AA$, b = 10.714(2) $\AA$, c = 18.031(2) $\AA$, $\alpha=$ 77.36(2), $\beta=107.83(2)^{\circ}$, $\gamma=$ 66.92(2), V = 1438.0(5) $\AA3$ , Z =2,R = 0.0486) reveals that the skeletal structure is an anion-bridged double-strand. The double-strands are packed like a plywood. The framework of [Ag(3,3'-Py2S)](CF3SO3) (orthorhombic Pcab, a = 17.330(2) $\AA$, b = 8.640(1) $\AA$, c = 19.933(6) $\AA$, V = 2985(1) $\AA3$ , Z =8, R = 0.0437) is a sinusoidal single-strand. The formation of each coordination polymer appears to be primarily associated with the donating ability and the confor ma-tional energy barrier of the spacer ligands. Thermal analyses indicate that [Ag(CF3SO3)(3,3'-Py2O)] and [Ag(3,3'-Py2S)](CF3SO3) are stable up to 250 $^{\circ}C$ and 210 $^{\circ}C$, respectively. For the anion exchangeability, the nature of the spacer ligand is more significant factor than the distance of silver(Ⅰ)···triflate.

Keywords

References

  1. Aumuller, A.; Erk, P.; Klebe, G.; Hunig, S.; von Schultz, J. U.;Werner, H. P. Angew. Chem., Int. Ed. Engl. 1986, 25, 740. https://doi.org/10.1002/anie.198607401
  2. Ermer, O. Adv. Mater. 1991, 3, 608. https://doi.org/10.1002/adma.19910031208
  3. De Munno, G.; Munoz, M. C.; Julve, M. Inorg. Chem. 1991, 30,2701. https://doi.org/10.1021/ic00012a026
  4. Stumpf, H. O.; Ouahab, L.; Pei, Y.; Grandjean, D.; Kahn, O.Science 1993, 261, 447. https://doi.org/10.1126/science.261.5120.447
  5. Real, J. A.; Andres, A.; Munoz, M. C.; Julve, M.; Granier, T.;Bousseksou, A.; Varret, F. Science 1995, 268, 265. https://doi.org/10.1126/science.268.5208.265
  6. Zhao, H.; Heintz, R. A.; Dunbar, K. R.; Rogers, R. D. J. Am.Chem. Soc. 1996, 118, 12844. https://doi.org/10.1021/ja962504w
  7. Escuer, A.; Vicente, R.; Goher, M. A. S.; Mautner, F. A. Inorg.Chem. 1997, 36, 3440. https://doi.org/10.1021/ic961476f
  8. Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546. https://doi.org/10.1021/ja00160a038
  9. Yuge, H.; Iwamoto, T. J. Chem. Soc., Dalton Trans. 1994, 1237.
  10. Kawata, S.; Kitagawa, S.; Kondo, M.; Furuchi, I.; Munakata, M.Angew. Chem., Int. Ed. Engl. 1994, 33, 1759. https://doi.org/10.1002/anie.199417591
  11. Venkataraman, D.; Gardner, G. F.; Lee, S.; Moore, J. S. J. Am.Chem. Soc. 1995, 117, 11600. https://doi.org/10.1021/ja00151a034
  12. Jung, O.-S.; Pierpont, C. G. J. Am. Chem. Soc. 1994, 116, 2229. https://doi.org/10.1021/ja00084a107
  13. Kauranen, M.; Verviest, T.; Bouttoon, C.; Teerenstra, M. N.;Clays, K.; Schouten, A. J.; Nolte, R. J. M.; Pearsons, A. Science1995, 270, 966. https://doi.org/10.1126/science.270.5238.966
  14. Jung, O.-S.; Park, S. H.; Kim, D. C.; Kim, K. M. Inorg. Chem. 1998, 37, 610. https://doi.org/10.1021/ic971415x
  15. Jung, O.-S.; Park, S. H.; Kim, K. M.; Jang, H. G. Inorg. Chem.1998, 37, 5781. https://doi.org/10.1021/ic980278g
  16. Jung, O.-S.; Park, S. H.; Park, C. H.; Park, J. K. Chem. Lett. 1999,923.
  17. Jung, O.-S.; Park, S. H.; Lee, Y.-A.; Lee, U. Chem. Lett. 2000,1012.
  18. Yamaguchi, I.; Osakada, K.; Yamamoto, T. J. Am. Chem. Soc.1996, 118, 1811. https://doi.org/10.1021/ja953101j
  19. Lu, J.; Paliwala, T.; Lim, S. C.; Yu, C.; Niu, T.; Jacobson, A. J.Inorg. Chem. 1997, 36, 923. https://doi.org/10.1021/ic961158g
  20. Kitagawa, S.; Kawata, S.; Kondo, M.; Nozaka, Y.; Munakata, M.Bull. Chem. Soc. Jpn. 1993, 66, 3387. https://doi.org/10.1246/bcsj.66.3387
  21. Goodgame, D. M. L.; Menzer, S.; Smith, A. M.; Williams, D. J.Angew. Chem., Int. Ed. Engl. 1995, 34, 574. https://doi.org/10.1002/anie.199505741
  22. Blacke, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.;Schroder, M. Chem. Commun. 1997, 1005.
  23. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, J. K.; Chae, H. K. J. Am.Chem. Soc. 2000, 122, 9921. https://doi.org/10.1021/ja001618b
  24. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Chae, H. K.; Jang, H. G.;Hong, J. K. Inorg. Chem. 2001, 40, 2105. https://doi.org/10.1021/ic001072u
  25. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Yoo, K. H.; Chae, H. K. Bull.Korean Chem. Soc. 2001, 22, 534.
  26. Barker, D. M.; Summers, L. A. J. Heterocycl. Chem. 1983, 20,1411. https://doi.org/10.1002/jhet.5570200550
  27. Summers, L. A. J. Heterocycl. Chem. 1987, 24, 533. https://doi.org/10.1002/jhet.5570240301
  28. Summers, L. A.; Trotman, S. J. Heterocycl. Chem. 1984, 21, 917. https://doi.org/10.1002/jhet.5570210360
  29. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4thed.; John Wiley & Sons: New York, 1980; p 246.
  30. Sheldrick, G. M. SHELXS-97: A Program for Structure Determination;University of Gottingen: Germany, 1997; Sheldrick, G. M.SHELXL-97: A Program for Structure Refinement; University ofGottingen: Germany, 1997.
  31. Dunne, S. J.; Summers, L. A.; von Nagy-Felsobuki, E. I. J.Heterocycl. Chem. 1992, 29, 851. https://doi.org/10.1002/jhet.5570290431
  32. Dunne, S. J.; Summers, L. A.; von Nagy-Felsobuki, E. I. J.Heterocycl. Chem. 1990, 27, 1787. https://doi.org/10.1002/jhet.5570270650

Cited by

  1. Discrete and Infinite Cyclic Dimer M(II) Complexes (M = Co, Zn) Based on Angular Dipyridyl Ligands Incorporating an Amide Spacer vol.26, pp.3, 2005, https://doi.org/10.5012/bkcs.2005.26.3.473
  2. Syntheses, spectroscopic and structural characterization of some (solvated) binuclear adducts of the form Ag(oxyanion):dpem(:S) (1:1(:x))2 (oxyanion=ClO4, F3CCO vol.358, pp.3, 2002, https://doi.org/10.1016/j.ica.2004.07.032