DOI QR코드

DOI QR Code

Design, Syntheses and Biological Evaluations of Nonpeptidic Caspase 3 Inhibitors


Abstract

Caspase 3, a member of cysteine protease family, is well known as a major apoptosis effector and is involved in cell death as a result of ischemic diseases such as stroke and myocardial infarction, therefore the inhibition of caspase 3 may protect those apoptotic cell damages. During the high-throughput screening of the compounds from the Korea Chemical Bank, berberine derivatives (A and B), an isoquinoline alkaloid, have been identified as potential inhibitors for caspase 3. Based on this finding we carried out molecular modeling study to identify the pharmacophoric elements of berberine structure which interact with a substrate-recognition binding site of caspase 3 and came up with several novel scaffolds. In this report, we will discuss the molecular modeling, syntheses and the enzyme inhibitory activities of these novel compounds.

Keywords

References

  1. Thompson, C. B. Science 1998, 267, 1256. https://doi.org/10.1126/science.267.5202.1256
  2. Salvesen, G. S.; Dixit, V. M. Cell 1997, 94, 443.
  3. Cohen, G. M. Biochem. J. 1997, 326, 1.
  4. Thornberry, N. A.; Lazebnik, Y. Science 1998, 281, 1312. https://doi.org/10.1126/science.281.5381.1312
  5. Slee, E. A. et. al. J. Cell Biol. 1999, 144, 281. https://doi.org/10.1083/jcb.144.2.281
  6. Zeunner, A.; Eramo, A.; Peschle, C.; Maria, R. D. Cell DeathDiffer. 1999, 6, 1075. https://doi.org/10.1038/sj.cdd.4400596
  7. Xue, D.; Shaham, S.; Horvitz, H. R. Genes Dev. 1996, 10, 1073. https://doi.org/10.1101/gad.10.9.1073
  8. Steller, H. Science 1995, 267, 1445. https://doi.org/10.1126/science.7878463
  9. Yuan, J. Y.; Shaham, S.; Ledoux, S.; Ellis, H. M.; Horvitz, H. R.Cell 1993, 75, 641. https://doi.org/10.1016/0092-8674(93)90485-9
  10. Horvitz, H. R.; Shaham, S.; Hengartner, M. O. Cold SpringHarbor Symp. Quant. Biol. 1994, 111, 377.
  11. Humke, E. W.; Ni, J.; Dixit, V. M. J. Biol. Chem. 1998, 273,15702. https://doi.org/10.1074/jbc.273.25.15702
  12. Thornberry, N. A.; Bull, H. D.; Calaycay, J. R. Nature 1992, 396,768.
  13. Nicholson, D. W.; Ali, A.; Thornberry, N. A. Nature 1995, 376,37. https://doi.org/10.1038/376037a0
  14. Ramage, P.; Cheneval, D.; Chvei, M.; Graff, P. J. Biol. Chem.1995, 270, 9378. https://doi.org/10.1074/jbc.270.16.9378
  15. Nicholson, D. W.; Thornberry, N. A. Trends Biochem. Sci. 1997,22, 299. https://doi.org/10.1016/S0968-0004(97)01085-2
  16. Hoshi, T.; Sasano, H.; Kato, K. Anticancer Res. 1998, 18, 4347.
  17. Condorelli, G.; Roncarati, R.; Ross, J. Proceedings of the NationalAcademy of Sciences of the United States of America 2001, 98,9977. https://doi.org/10.1073/pnas.161120198
  18. Cryns, V. L.; Yuan, J. In When Cells Die; Lockshin, R. A., Zakeri,Z., Tilly, J. L., Eds.; John Wiley & Sons: New York, 1998; p 177.
  19. Garcia-Calvo, M.; Peterson, E. P.; Leiting, B.; Ruel, R.;Nicholson, D. W.; Thornberry, N. A. J. Biol. Chem. 1998, 273,32608. https://doi.org/10.1074/jbc.273.49.32608
  20. Schotte, P.; Declercq, W.; Van Huffel, S.; Vandenabeele, P.;Beyaert, R. FEBS Lett. 1999, 442, 117. https://doi.org/10.1016/S0014-5793(98)01640-8
  21. Porter, A. G.; Jänicke, R. U. Cell Death Differ. 1999, 6, 99. https://doi.org/10.1038/sj.cdd.4400476
  22. Yi, K. Y.; Yoo, S. Tetrahedron Lett. 1995, 36, 1679. https://doi.org/10.1016/0040-4039(95)00129-Z
  23. Lee, D.; Long, S. A.; Murray, J. H. J. Med. Chem. 2001, 44, 2015. https://doi.org/10.1021/jm0100537
  24. Endo, T.; Saeki, S.; Hamana, M. Chem. Pharm. Bull. 1981, 29,3105. https://doi.org/10.1248/cpb.29.3105
  25. Hassanaly, P.; Vernin, G.; Dou, H.; Metzger, J. J. Heterocycl.Chem. 1975, 12, 703. https://doi.org/10.1002/jhet.5570120417
  26. Natsume, M.; Kumadaki, S.; Tanabe, R. Itsuu Kenkyusho Nempo1971, 16, 25.
  27. Zhou, Z.; Liu, Y.; Tu, C. Shanghai Yike Daxue Xuebao 1989, 16,71.
  28. Moerkved, E. H. Acta Chem. Scand., Ser. B 1979, 33, 544.
  29. Largeron, M.; Vuilhorne, M.; Le Potier, I.; Auziel, N.; Bacque, E.;Paris, J. M.; Fleury, M. B. Tetrahedron 1994, 50, 6307. https://doi.org/10.1016/S0040-4020(01)80650-5
  30. Schut, R. N.; Snoke, E. O.; Van Dyke, J. W. Jr. US 4232160, 1980.
  31. Nuvole, A.; Pinna, G. A. J. Heterocycl. Chem. 1978, 15, 1513. https://doi.org/10.1002/jhet.5570150857

Cited by

  1. Polymorphic Nucleic Acid Binding of Bioactive Isoquinoline Alkaloids and Their Role in Cancer vol.2010, pp.2090-021X, 2010, https://doi.org/10.4061/2010/593408
  2. ChemInform Abstract: Design, Syntheses and Biological Evaluations of Nonpeptidic Caspase 3 Inhibitors. vol.33, pp.48, 2010, https://doi.org/10.1002/chin.200248155
  3. -Oxides vol.80, pp.11, 2015, https://doi.org/10.1021/acs.joc.5b00475
  4. Berberine: A potential adjunct for the treatment of gastrointestinal cancers? vol.119, pp.12, 2018, https://doi.org/10.1002/jcb.27392
  5. Synthesis and photophysical properties of a series of thermally stable terphenyl-bridged bisbenzimidazoles vol.88, pp.3, 2002, https://doi.org/10.1016/j.dyepig.2010.07.006
  6. Microwave-assisted Suzuki–Miyaura cross-coupling of 2-alkyl and 2-alkenyl-benzo-1,3,2-diazaborolanes vol.67, pp.23, 2011, https://doi.org/10.1016/j.tet.2011.03.095