DOI QR코드

DOI QR Code

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems


Abstract

Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Keywords

References

  1. Grunwald, E.; Winstein, S. J. Am Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  2. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17,121. https://doi.org/10.1002/9780470171967.ch5
  3. Ryu, Z. H.; Ju, C.-S.; Sung, D. D.; Sung, N. C.; Bentley, T. W.Bull. Korean Chem. Soc. 2002, 23, 123. https://doi.org/10.5012/bkcs.2002.23.1.123
  4. Kevill, D. N.; D'Souza, M. J. Can. J. Chem. 1999, 77, 1118. https://doi.org/10.1139/cjc-77-5-6-1118
  5. Kevill, D. N.; D'Souza, M. Phys. Org. Chem. 1992, 5, 287. https://doi.org/10.1002/poc.610050602
  6. Tekeuchi, K.; Ohga, Y.; Ushino, T.; Takasuka, M. J. Org. Chem.1997, 62, 4907.
  7. Koo, I. S.; Yang, K.; Oh, H. K.; Lee, I. Bull. Korean Chem. Soc.1996, 17, 491.
  8. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  9. Kevill, D. N.; D'Souza, M. J. J. Chem. Res(s). 1993, 174.
  10. Kevill, D. N. In Advances in Quantitative StructurepropertyRelationships; Chorton, M., Ed.; JAIPress: Greenwich, CT, 1996;Vol. 1, p 81.
  11. Bentley, T. W.; Shim. C. S. J. Chem. Soc. Perkin Trans. 2 1993,1659.
  12. Bentley, T. W.; Llewellyn, G.; McAlister, J. A. J. Org. Chem.1996, 61, 7927. https://doi.org/10.1021/jo9609844
  13. Kevill, D. N.; Kim, C.-B. J. Chem. Soc. Perkin Trans. 2 1988,1353.
  14. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J.Chem. Soc. Perkin Trans. 2 2002, 1282.
  15. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63,4654. https://doi.org/10.1021/jo980109d
  16. Winstein, S.; Fainberg, A. H.; Grunwald, E. J. Org. Chem. 1957,79, 4147.
  17. D'Souza, M. J.; Kevill, D. N. J. Org. Chem. 1995, 60, 1 632. https://doi.org/10.1021/jo00111a022
  18. Kevill, D. N.; Oldfield, A. J.; D'Souza, M. J. J. Chem. Res(s).1996, 1, 22.
  19. Koo, I. S.; Yang, K.; Oh, H. K.; Lee, I. Bull. Korean Chem. Soc.1996, 17, 493.
  20. Bentley, T. W.; Dau-Schmitdt, J.-P.; Llewellyn, G.; Mayr, H. J.Org. Chem. 1992, 57, 2387. https://doi.org/10.1021/jo00034a035
  21. Bentley, T. W.; Koo, I. S.;Norman, J. S. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  22. Koo, I. S.; Yang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc.Perkin Trans. 2 1998, 1179.
  23. Bentely, T. W.; Jones, R. O. J.Chem. Soc. Perkin Trans. 2 1993, 2351.
  24. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001,14, 759. https://doi.org/10.1002/poc.425
  25. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljaber,M. H.; Miller, B.; Kevill, D. N. J. Chem. Dalton Trans. 1997,819.
  26. Murto, J. Act. Chem. Scand. 1964, 18, 1029. https://doi.org/10.3891/acta.chem.scand.18-1029
  27. Bentely, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. PerkinTrans. 2 1994, 753.
  28. Koo, I. S.; Lee, I.; Oh, J.; Yang, Y.; Bentlely, T. W. J. Phys. Org.Chem. 1993, 6, 223. https://doi.org/10.1002/poc.610060405
  29. Charton, M. Prog. Phys. Org. Chem. 1981, 13, 119. https://doi.org/10.1002/9780470171929.ch3
  30. Lee, I.; Koh, H. J.; Park, Y. S.; Lee, H. W. J. Chem. Soc., PerkinTrans. 2 1993, 1575.
  31. Mooradian, A.; Cavallito, C. J.; Bergman, A. J.; Lawson, E. J.;Suter, C. M. J. Am. Chem. Soc. 1949, 71, 3372. https://doi.org/10.1021/ja01178a030
  32. Guggenheim, E. A. Phil. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083

Cited by

  1. Application of the Extended Grunwald-Winstein Equation to Solvolyses of n-Propyl Chloroformate vol.6, pp.1, 2005, https://doi.org/10.3390/i6010087
  2. Correlation of the rates of solvolysis of acetyl chloride and α-substituted derivatives vol.86, pp.5, 2008, https://doi.org/10.1139/v08-028
  3. Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems vol.24, pp.9, 2003, https://doi.org/10.5012/bkcs.2003.24.9.1293
  4. Correlation of the Rate of Solvolysis of 2-Chloro-thioacetophenones vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.307
  5. Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1761
  6. Evaluation of Methylthio and Phenylthio Group Effects in the Solvolyses of 2-Chloro-2-(methylthio)acetone and 2-Chloro-2-(phenylthio)acetophenone Using Extended Grunwald-Winstein Equations vol.29, pp.11, 2002, https://doi.org/10.5012/bkcs.2008.29.11.2145
  7. Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions vol.33, pp.11, 2002, https://doi.org/10.5012/bkcs.2012.33.11.3657
  8. Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions vol.34, pp.2, 2002, https://doi.org/10.5012/bkcs.2013.34.2.615
  9. The Grunwald-Winstein Relationship in the Solvolysis of β-Substituted Chloroformate Ester Derivatives: The Solvolysis of 2-Phenylethyl and 2,2-Diphenylethyl Chloroformates vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2263