DOI QR코드

DOI QR Code

Crystal Structures of Zeolite X Exchanged by Two Different Cations. Structures of Cd32Cs28-X and Cd28Rb36-X (X=Si100Al92O384)


Abstract

Two anhydrous crystal structures of fully dehydrated Cd2+ - and Cs+ -exchanged zeolite X, Cd32Cs28Si100Al92O384 (Cd32Cs28-X: a = 24.828(11) $\AA)$ and fully dehydrated Cd,sup>2+ - and Rb+ -exchanged zeolite X, Cd28Rb36Si100Al92O384 (Cd28Rb36-X: a = 24.794(2) $\AA$), have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ The structures were refined to the final error indices, R1 = 0.058 and R2 = 0.065 with 637 reflections for Cd32Cs28-X and R1 = 0.086 and R2 = 0.113 with 521 reflections for Cd28Rb36-X for which I > $3\sigma(I)$. In the structure of Cd,sub>32Cs28-X, 16 Cd2+ ions fill the octahedral sites I at the centers of the double six rings (Cd-O = $2.358(8)\AA$ and O-Cd-O = $90.8(3)^{\circ}$ ). The remaining 16 Cd2+ ions occupy site II (Cd-O = $2.194(8)\AA$ and O-Cd-O = $119.7(4)^{\circ})$ and six Cs+ ions occupy site II opposite to the single six-rings in the supercage; each is $2.322\AA$ from the plane of three oxygens (Cs-O = 3.193(13) and O-Cs-O = $73.0(2)^{\circ}).$ Aboutten Cs+ ions are found at site II', $1.974\AA$ into the sodalite cavity from their three oxygen plane (Cs-O = $2.947(8)\AA$ and O-Cs-O = $80.2(3)^{\circ}).$ The remaining 12 Cs+ ions are distributed over site III' (Cs-O = 3.143(9) and O-Cs-O= $59.1(2)^{\circ})$. In the structure of Cd28Rb36-X, 16 Cd2+ ions fill the octahedral sites I at the center of the double-sixrings (Cd-O = 2.349(15) and O-Cd-O = $91.3(5)^{\circ}$ ). Another 12 Cd2+ ions occupy two different II sites (Cd-O = $2.171(18)/2.269(17)\AA$ and O-Cd-O = $119.7(7)/113.2(7)^{\circ}).$ Fifteen Rb+ ions occupy site II (Rb-O = $2.707(17)\AA$ and O-Rb-O = $87.8(5)^{\circ}).$ The remaining 21 Rb+ ions are distributed over site III' (Rb-O = $3.001(16)\AA$ and O-Rb-O = $60.7(4)^{\circ})$. It appears that the smaller and more highly charged Cd2+ ions prefer sites I and Ⅱ in that order, and the larger Rb+ and Cs+ ions, which are less able to balance the anionic charge of the zeolite framework, occupy sites II and II' with the remainder going to the least suitable site in the structure, site III'.The maximum Cs+ and Rb+ ion exchanges were 30% and 39%, respectively. Because these cations are too largeto enter the small cavities and their charge distributions may be unfavorable, cation-sieve effects might appear.

Keywords

References

  1. Broussard, L.; Shoemarker, D. P. J. Am. Chem. Soc. 1960, 82,1041. https://doi.org/10.1021/ja01490a007
  2. Olson, D. H. J. Phys. Chem. 1970, 74, 14.
  3. Mortier, W. J. Compilation of Extra-framework Scites in Zeolites;Butterworth Scientific Ltd.: Guildford, U. K., 1982.
  4. Schollner, R.; Broddack, R.; Kuhlmann, B.; Nozel, P.; Herden, H.Z. Phys. Chem. (Leipzig) 1981, 262, 17.
  5. Egerton, T. S.; Stone, F. S. J. Chem. Soc., Faraday Trans. I 1970,66, 2364. https://doi.org/10.1039/tf9706602364
  6. Calligaris, M.; Mezzetti, A.; Nardin, G.; Randaccio, L. Zeolites1986, 6, 439. https://doi.org/10.1016/0144-2449(86)90027-8
  7. Shepelev, Y. F.; Butikova, I. K.; Smolin, Yu, I. K.; Smolin, Yu. I.Zeolites 1991, 11, 287. https://doi.org/10.1016/S0144-2449(05)80234-9
  8. Jang, S. B.; Song, S. H.; Kim, Y. J. Korean Chem. Soc. 1995, 39,1.
  9. Jang, S. B.; Kim, M. S.; Han, Y. W.; Kim, Y. Bull. Korean Chem.Soc. 1996, 17, 7.
  10. Kwon, J. H.; Jang, S. B.; Kim, Y.; Seff, K. J. Phys. Chem. 1996,100, 13720. https://doi.org/10.1021/jp9603647
  11. Kim, M. J.; Kim, Y.; Seff, K. Korean J. Crystallogr. 1997, 8, 1.
  12. Handbook of Chemistry and Physics, 70th ed.; The ChemicalRubber Co.: Cleveland, Ohio, 1989/1990; P F-187.
  13. Bogomolov, V. N.; Petranovskii, V. P. Zeolites 1986, 6, 418. https://doi.org/10.1016/0144-2449(86)90020-5
  14. International Tables for X-ray Crystallography; Kynoch Press:Birmingham, England, 1944; Vol. II, p 302.
  15. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 5314. https://doi.org/10.1021/jp970727i
  16. Choi, E. Y.; Kim, Y. J. Korean Chem. Soc. 1999, 43, 384
  17. Calculations were performed using the software package“MolEN” supplied by Enraf-Nonius, The Netherlands, 1990.
  18. International Tables for X-ray Crystallography, Kynoch Press:Birmingham, England, 1974; Vol. IV, pp 73-87.
  19. Cromer, D. T. Acta Crystallogr. 1965, 18, 17. https://doi.org/10.1107/S0365110X6500004X
  20. International Tables for X-ray Crystallography, Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 149-150.
  21. Sun, T.; Seff, K.; Heo, N. H.; Petranovskii, V. P. Science 1993,259, 495. https://doi.org/10.1126/science.259.5094.495
  22. Sun, T.; Seff, K. Chem. Rev. 1994, 94, 859.
  23. Kwon, J. H.; Jang, S. B.; Kim, Y.; Seff, K. J. Phys. Chem. 1996,100, 13720. https://doi.org/10.1021/jp9603647
  24. Koller, H.; Burger, B.; Schneider, A.; Englehardt, G.; Weitkamp,J. Micro. Mes. Mat. 1995, 5, 219. https://doi.org/10.1016/0927-6513(95)00061-5

Cited by

  1. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database vol.39, pp.3, 2010, https://doi.org/10.1063/1.3432459
  2. Single-Crystal Structures of Sr2+ and Cs+-Exchanged Zeolites X and Y, |Sr40Cs12|[Si100Al92O384]-FAU and |Sr29Cs17|[Si117Al75O384]-FAU vol.44, pp.5, 2014, https://doi.org/10.1007/s10870-014-0511-9
  3. Behavior of cesium cation in zeolite Y (FAU, Si/Al = 1.56) and their single-crystal structures, |Cs75−xNax|[Si117Al75O384]-FAU (x = 35 and 54) vol.24, pp.1, 2017, https://doi.org/10.1007/s10934-016-0237-5
  4. Crystallographic studies on the site selectivity of Ca2+, K+, and Rb+ ions within zeolite Y (Si/Al = 1.56) vol.24, pp.4, 2017, https://doi.org/10.1007/s10934-016-0335-4
  5. Crystal Structure of Fully Dehydrated Partially Cs+-Exchanged Zeolite X, Cs52Na40-X (The Highest Cs+-Exchanged Level Achieved by Conventional Method and Con vol.28, pp.2, 2007, https://doi.org/10.5012/bkcs.2007.28.2.251