DOI QR코드

DOI QR Code

Synthesis and Characterization of New Orange-Red Light-Emitting PPV Derivatives With Bulky Cyclohexyl Groups


초록

A series of 2,5-dialkoxy substituted poly(1,4-phenylenevinylene) derivatives containing a rigid and bulky cyclohexyl group in the side chain, poly[2-(7-cyclohexylheptyloxy)-5-butoxy-1,4-phenylenevinylene] (PBCyHpPV), Poly[2-(6-cyclohexylmethoxyhexyloxy)-5-butoxy-1,4-phenylenevinylene] (PBCyHxPV), Poly[2,5-di-(6-cyclohexylmethoxy-hexyloxy)-1,4-phenylenevinylene] (PDCyHxPV) were synthesized via the Gilch polymerization. The synthesized polymers were soluble in common organic solvents and showed good thermal stability up to $370^{\circ}C$. The maximum absorption of PBCyHpPV, PBCyHxPV and PDCyHxPV as thin films was at 513 ㎚, 515 ㎚, 511 ㎚, respectively. Photoluminescence maximum emission of above polymers appeared at 590 ㎚, 597 ㎚, 590 ㎚, respectively. The electroluminescence (EL) maxima of the polymers appeared around 585-590 ㎚, and also showed another shoulder around 630 ㎚ strongly. PDCyHxPV showed the highest EL efficiency and EL power than those of other polymers due to the dilution effect of the two rigid and bulky cyclohexyl groups.

키워드

참고문헌

  1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539. https://doi.org/10.1038/347539a0
  2. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Tiliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. Nature 1999, 397, 121. https://doi.org/10.1038/16393
  3. Shim, H. K.; Jin, J. I. Advances in Polymer Science 2002, 158, 194.
  4. Yang, Z.; Sokolik, I.; Harasz, F. E.; Bradley, D. D. C. Macromolecules 1993, 26, 1188. https://doi.org/10.1021/ma00057a047
  5. Sokolik. I.; Yang, Z.; Karasz, F. E. J. Appl. Phys. Commun. 1993, 75, 3584.
  6. Hwang, D. H.; Kang, I. N.; Jang, M. S.; Shim, H. K. Bull. Korean Chem. Soc. 1995, 16, 135.
  7. Yang, Z.; Karasz, F. E.; Geise, H. J. Macromolecules 1993, 26, 6570. https://doi.org/10.1021/ma00076a040
  8. Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M. Science 1995, 267, 1969. https://doi.org/10.1126/science.267.5206.1969
  9. Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 3621.
  10. Berggren, M.; Inganas, O.; Gustafsson, G.; Carberg, J. C.; Rasmusson, J.; Anderson, M. R.; Hjertberg, T.; Wennerstron, O. Nature 1994, 372, 444. https://doi.org/10.1038/372444a0
  11. Yoshida, M.; Fujii, A.; Ohmori, Y.; Yoshino, K. J. Appl. Phys. 1996, 35, L397. https://doi.org/10.1143/JJAP.35.L397
  12. Zyung, T.; Kim, J. I.; Hwang, W. Y.; Shim, H. K. Synth. Met. 1995, 71, 2167. https://doi.org/10.1016/0379-6779(94)03205-K
  13. Kang, I. N.; Shim, H. K.; Zyung,T. Chem. Mater. 1997, 9, 746. https://doi.org/10.1021/cm960455g
  14. Jang, M. S.; Shim, H. K. Polymer Bulletin 1995, 35, 49. https://doi.org/10.1007/BF00312893
  15. Shim, H. K.; Jang, M. S.; Hwang, D. H. Macromol. Chem. Phys. 1997, 198, 353. https://doi.org/10.1002/macp.1997.021980211
  16. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. https://doi.org/10.1038/357477a0
  17. Aratani, S.; Zhang, C.; Pakbaz, K.; Hoger, S.; Wudl, F.; Heeger, A. J. J. Elec. Mater. 1993, 22, 745. https://doi.org/10.1007/BF02817349
  18. Yang, Y.; Heeger, A. J. Appl. Phys. Lett. 1994, 64, 1245. https://doi.org/10.1063/1.110853
  19. Doi, S.; Kuwabara, M.; Noguchi, T.; Ohshino, T. Synth. Met. 1991, 55, 4174.
  20. Ohshimura, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, L1938. https://doi.org/10.1143/JJAP.30.L1938
  21. Anderson, M. R.; Berggerren, M.; Inganas, O.; Gustafsson, G.; Gustafsson-Carlsberg, J. C.; Selse, D.; Hjertberg, T.; Wennerstorm, O. Macromolecules 1995, 28, 7526.
  22. Inganas, O.; Berggerren, M.; Anderson, M. R.; Gustafsson, G.; Hjertberg, T.; Wennerstorm, O.; Dyreklev, P.; Granstrom, M. Synth. Met. 1995, 71, 2121. https://doi.org/10.1016/0379-6779(94)03194-B
  23. Jang, M. S.; Song, S. Y.; Lee, J. I.; Shim, H. K.; Zyung, T. Macromol. Chem. Phys. 1999, 200, 1101. https://doi.org/10.1002/(SICI)1521-3935(19990501)200:5<1101::AID-MACP1101>3.0.CO;2-B
  24. Pommerehe, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 55. https://doi.org/10.1002/adma.19950070112
  25. Ahn, T.; Ko, S. W.; Lee, J.; Shim, H. K. Macromolecules 2002, 35, 3495. https://doi.org/10.1021/ma011618b

피인용 문헌

  1. Synthesis and investigation of novel poly(p-arylenevinylene)s containing 2-substituted pyrimidine fragments vol.65, pp.9, 2016, https://doi.org/10.1007/s11172-016-1580-z
  2. Polymer Light Emitting Diodes: Materials, Technology and Device vol.57, pp.17, 2018, https://doi.org/10.1080/03602559.2017.1422269
  3. Poly(fluorenevinylene) derivatives by Heck coupling: Synthesis, photophysics, and electroluminescence vol.44, pp.15, 2006, https://doi.org/10.1002/pola.21542
  4. -phenylenevinylene)s and their copolymers vol.47, pp.10, 2009, https://doi.org/10.1002/pola.23348
  5. Synthesis of 5,6-Dihydro[1,10]phenanthroline Derivatives and Their Properties as Hole-Blocking Layer Materials for Phosphorescent Organic Light-Emitting Diodes vol.26, pp.10, 2002, https://doi.org/10.5012/bkcs.2005.26.10.1569
  6. Chemical Vapor Deposition Polymerization of Poly(arylenevinylene)s and Applications to Nanoscience vol.27, pp.2, 2002, https://doi.org/10.5012/bkcs.2006.27.2.169
  7. Control of &pgr;-Stacking for Highly Emissive Poly(p-phenylenevinylene)s: Synthesis and Photoluminescence of New Tricyclodecane Substituted Bulky Poly(p-phenylenevinylene)s and Its Copolymers vol.110, pp.9, 2002, https://doi.org/10.1021/jp056522o
  8. Probing the &pgr;-Stacking Induced Molecular Aggregation in &pgr;-Conjugated Polymers, Oligomers, and Their Blends of p-Phenylenevinylenes vol.112, pp.4, 2002, https://doi.org/10.1021/jp077404z
  9. Synthesis and spectroscopic characterization studies of low molecular weight light emitting PPV segmented copolymers vol.32, pp.2, 2009, https://doi.org/10.1016/j.optmat.2009.08.017