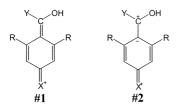
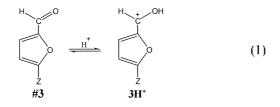
Notes


Transmission of Substituent Effects in the Protonation of Substituted 2-Furaldehydes in Sulfuric Acids

Ikchoon Lee,* Tae Seop Uhm,* Zoon Ha Ryu,* In Sun Koo,* and Jong Pal Lee**

Department of Chemistry, Inha University, Inchon 402-751, Korea [†]Department of Chemistry, Dongeui University. Pusan 614-714, Korea ^{*}Department of Chemical Education, Gyeongsang National University, Chinju 660-701, Korea [§]Department of Chemistry, Dong-A University, Pusan 604-714, Korea Received February 21, 2002


Keywords : Excess acidity, Protonation. 5-Substituted-2-furaldehydes.

The transmission of substituent effects through aromatic and heteroaromatic ring has been the subject of extensive studies.¹ Experimentally, carbonyl group is one of the most commonly used and versatile probe for studying the substituent ring probe interactions.^{1g,2} The protonation equilibria of a number of carbonyl compounds such as aromatic acids,¹¹ ketones^{1b,g,3} aldehydes,¹¹ amides^{1k,4} and esters^{1b} have been reported in concentrated solutions of mineral acid.

An interesting aspect of the results of these studies is that the resonance effect of an electron donor ($\sigma_X < 0$) has to be regarded as a blend of normal conjugation (#1) and Π polarization (#2). The Π -polarization mechanism (#2) has been found to apply in the hindered ($R = CH_3$) as well as unhindered (R = H) series of carbonyl compounds.^{1f,3}

In this work, the protonation equilibria of 2-furaldehydes (#3), have been studied in aqueous sulfuric acid solution at 298 K, eq. (1) where $Z = CH_3$, H, Br and NO₂. The purpose

of this work is to examine whether the Π -polarization mechanism also applies to the 5-memberd heteroaromatic ring systems, and if so, what causes to favor the Π -polarization (#2) rather than direct conjugation (#1)?

Experimental Section

Materials. The substrates, 2-furaldehydes were Aldrich special grade reagents. The water was degassed by bubbling through nitrogen gas and the sulfuric acid solution were titrated by 0.1 N NaOH to exact concentrations.

pK_{BH}+ **Measurements**. Ionization ratios, $l = C_{BH}/C_B$ where C_{BH} and C_B are molar concentrations of conjugate acid and base, were determined spectrophotometerically by eq. (2) where the absorbance D was recorded immediately

$$I - C_{BH^{-}}/C_{B} - (D - D_{B})/(D_{BH^{+}} - D)$$
(2)

after addition of the substrate into aqueous sulfuric acids of given concentration and D_B is the absorbance of the unprotonated substrate and D_{BfF} that of its conjugate acid. The pK_{BfF} values for each compound were obtained by means of the excess acidity method, ^{163,4} eq. (3) where X is the excess acidity (EA).

$$\log l - \log C_{H^+} - m^* X + p K_{BH^+}$$
(3)

The $C_{\rm H^+}$ and X values used in eq. (3) were calculated by interpolation of literature data.^{5.6} The slope, m*, reflects primarily the susceptibility of the protonated substrate to

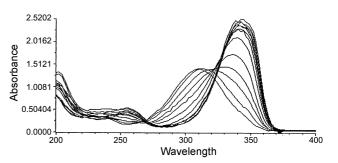
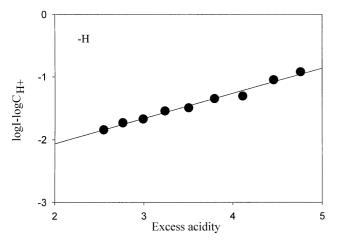


Figure 1. Absortion spectra for protonation of 5-bormo-2-furaldehyde in the range of 70 w/w%-94 w/w% aqueous sulfuric acid solution.

Notes

Table 1. Maximum absorption wavelengths for base B and the corresponding protonated form BH⁺ of 5-substituted-2-furalde-hydes (5-Z-FA)

	5-Z-FA		
Z	В	BH⁻	
	λ_{\max}	λ _{max}	
CH ₃	294	326	
H	278	308	
Br	292	340	
NO ₂	310	320	


Table 2. Values of excess acidity function and ionization ratio of 2-fural dehyde in 52.5 w/w%-72.0 w/w% aqueous sulfuric acid at 25 $^{\circ}\mathrm{C}$

w/w% acid	logC _{II} .	х	D308	logi	$\log I/C_{\rm HI}$
52.5	0.970	2.548	0.419	-0.873	-1.844
55.0	0.992	2.763	0.501	-0.741	-1.733
57.5	1.014	2.992	0.563	-0.657	-1.671
60.0	1.033	3.238	0.689	-0.512	-1.545
62.5	1.052	3.505	0.758	-0.443	-1.495
65.0	1.069	3.795	0.942	-0.279	-1.348
67.5	1.084	4.112	1.009	-0.224	-1.308
70.0	1.097	4.459	1.364	0.049	-1.048
72.0	1.108	4.759	1.544	0.187	-0.921

stabilization by solvation (especially through hydrogen bonding). A typical absorption spectra in series of aqueous sulfuric acid solutions are shown in Figure 1, and the maximum absorption wavelengths (λ_{max}) used in the determination of ionization ratio, 1, are summarized in Table 1.

Results and Discussion

The raw data for determination of the pK_{BH} value by eq. (3) are shown for Z = H in Table 2 and the plot of logl –

Figure 2. Plot of $(logl-logC_{H1})$ vs. excess acidity for 2-furaldehyde in aqueous sulfuric acid at 25 °C.

Table 3. Acid dissociation constants, pK_{BH^+} and m^* values for 5-Z-2-furaldehyde (5-Z-FA) in aqueous sulfuric acid at 25 $^\circ C$

7.		5-Z-FA	
Z	рКвн+	m*	∆рКвн-
CH3	-2.50	0.39	-0.37
Н	-2.87	0.40	0.00
Br	-3.15	0.44	0.28
NO_2	-5.75	0.66	2.88

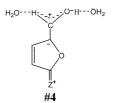
 $ApK_{BH^{+}} = (pK_{BH^{+}})_{H} - (pK_{BH^{+}})_{X}$

 $\log C_{H^{+}}$ versus X is presented in Figure 2.

All the plots exhibited good linearities and the pK_{BH} and m* values determined are collected in Table 3. Reference to Table 3 reveals that the magnitude of m* values (0.39-0.66) is relatively small and are similar to those for the protonation of benzamide (0.57)^{1k}, acetamide (0.55)^{1k} and benzoic acids (0.49-0.56).^{1f} These smaller m* values are in contrast to significantly higher values for the protonation of primary anilines (m* = 1.00)^{5.6} and ketones (2-acetylthiophenes, m* = 0.85; phenylthiophen-2-yl methanones, m* = 0.97).^{1g} The small m* values are believed to provide primary evidence of strong hydrogen bonding of the protonated forms (BH⁻) in H₂O.⁴

Our plots of the basicity (pK_{BH^+}) against σ_p^+ and σ_p showed negative slopes $(\rho^+ = -3.12 \pm 0.57, \rho = -3.47 \pm 0.61)$ with slightly better correlation for the latter (r = 0.968 and 0.971, respectively). Although the difference in the correlation coefficients is small, the fact that the σ_p^- plot did not give a better correlation indicates that through-conjugation mode (#1) is not predominant.⁴

There is a fairly good linearity (r = 0.971) in the plot of m* versus σ_p with a positive slope (0.30 ± 0.05). This is an indication that the solvation of the BH⁺ forms is closely related to the substituent effects. The dependence of pK_{BH}⁺ on m* is given by eq. (4).


 $pK_{BH^{-}} = -11.63 \pm 0.63 \text{ m}^{*} \pm 1.93 \pm 0.29 (r - 0.997)$ (4)

It is important that the slope (in eq. 4) is negative. This is qualitatively opposite to that commonly found,⁶ where a stronger solvation (with lower m* values) is generally required when BH⁻ is less stabilized by the substituent electronic effects. Thus if the mode of substituent effect transmission were the through-conjugation type (**#1**), an electron donor ($\sigma_p \le 0$) should be stabilized by the through-conjugation (**#1**) and the m* value should be higher.^{3,4} The opposite trends, *i.e.*, the smaller m* value for an electron donor, found in the present work (Table 3) is therefore an indication that the through-conjugation mode is not operative.

We therefore conclude that the substituent effects are transmitted by the Π -polarization mode (**#2**) in the protonated forms of 2-furaldehydes (**3H**⁺) based on (i) the relatively strong solvation BH⁻ with lower m* values, (ii) no better correlation with σ_p^- and (iii) the negative slope in eq. (4).

We think that strong solvation of $\mathbf{3H}^+$ with an electron

donor (Z = CH) is provided by the relatively low delocalizability of the oxygen atom in the hetero ring toward the carbonyl group. Theoretical analyses⁷ at the MP2/6-31G^{*} level⁸ indicated that the through-conjugation in the **3H**⁺ is lower than the corresponding mode in the protonated benzaldehyde. Thus solvation by H₂O can occur at two sites, #4, which is similar to that suggested for the hydration of benzoic acids.¹¹

The strong solvation of the BH⁻ forms with donor (σ_2 0) is only possible in the Π -polarization mode leading to the low m* values and to the low possibility of the throughconjugation mode. This is supported by the similar low m* values obtained for the protonation of hindered (R = CH in #1 and #2) as well as unhindered (R = H) benzoic acids (Y = OH),^{1f} acetophenones (Y = CH₃),³ methyl benzoates (Y = OCH₃)^{1b,c} and benzamides (Y = NH) with electron donor substituents. In all of these cases, Π -polarization is considered to represent the main resonance interaction mode between para-substituents and the carbonyl moiety.

Acknowledgment. This paper was supported by a basic data research fund of the Dong-A University in 2001.

References

- 1. (a) Dahn, H.: Pechy, P.: Toan, V. V. Angew. Chem. Int. Ed. Engl. 1990, 29, 647, (b) Erba, Dell'C.; Sancassan, F.; Novi, M.; Petrillo, G.; Mugnoli, A.; Spinelli, D.; Consiglio, G.: Gatti, P. J. Org. Chem. 1998, 53, 3564. (c) Erba. Dell'C.: Mele, A.: Novi, M.; Petrillo, G.; Sancassan, F.; Spinelli, D. J. Chem. Soc. Perkin Trans. 2 1990, 2055. (d) Derosa, M.: Brown, K.: McCoy, M.: Ong, K.: Sanford, K. J. Chem. Soc. Perkin Trans. 2 1993, 1787. (c) Noto. R.; Lamartina, L.; Arone, C.; Spinelli, D. J. Chem. Soc. Perkin Trans. 2 1987, 689. (f). DeMaria, P.: Fontana, A.: Spinelli, D.; Erba, Dell'C.: Novi, M.; Petrillo, G.; Sancassan, F. J. Chem. Soc. Perkin Trans. 2 1993, 649. (g) Noto, R.: Gruttadauria, M.: Rosselli, S.; Spinelli, D. J. Chem. Soc. Perkin Trans. 2 1996, 829. (h) Stewart, R.: Yates, K. J. Am. Chem. Soc. 1958, 80, 6355. (i) Yates. K.; Stewart, R. Can. J. Chem, 1959, 37, 664, (j) Stewart, R.; Yates, K. J. Am. Chem. Soc. 1960, 82, 4059. (k) Edward, J. T.: Chang, H. S.: Yates, K.; Stewart, R. Can. J. Chem. 1960, 38, 1518. (I) Bromilow, J.; BrownLee, R. T. C.; Craik, D. J.; Fiske, P. R.; Rowe, J. E.; Sadek, M. J. Chem. Soc. Perkin Trans. 2 1981, 753.
- Cox, R. A.; Druet, L. M.; Klausner, A. E.; Modro, T. A.; Wan, P.; Yates, K. Can, J. Chem. 1981, 59, 1568.
- Chimichi, S.; Erba, Dell'C.; Gruttadauria, M.; Noto, R.; Novi, M.; Petrillo, G.; Sancassan, E.; Spinelli, D. J. Chem. Soc. Perkin Trans. 2 1995, 1021.
- DeMaria, P.; Barbieri, C. L.; Spinelli, D.; Erba, Dell'C.; Novi, M.; Petrillo, G.; Saneassan, F. J. Chem. Soc. Perkin Trans. 2 1991, 373.
- 5. Cox, R. A.; Yates, K. J. Am. Chem. Soc. 1978, 100, 3861,
- Bagno, A.; Scorrano, G.; More O'Ferrall, R. Rev. Chem. Intermed. 1987, 7, 313.
- Lee, I.; Rhee, S. K.; Kim, C. K.; Chung, D. S.; Kim, C. K. Bull. Korean Chem. Soc. 2000, 21, 882.
- Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*: Wiley: New York, 1986; Chapter 5.