DOI QR코드

DOI QR Code

The Optimum pH of Oxidoreductases: A Comparison Between Experimental and Calculated pH Optimum

산화환원 효소의 최적 pH 예측

  • Kim, Jin Ryeon (School of Chemical Engineering, Seoul National University) ;
  • Yang, Ji Hye (School of Chemical Engineering, Seoul National University) ;
  • Yu, Yeong Je (School of Chemical Engineering, Seoul National University)
  • 김진련 (서울대학교 공과대학 응용화학부) ;
  • 양지혜 (서울대학교 공과대학 응용화학부) ;
  • 유영제 (서울대학교 공과대학 응용화학부)
  • Published : 2002.10.20

Abstract

For various oxidoreductases, the optimum pHs of the enzymes can be calculated using the rule based on proton transfer. Relative probability of a certain amino acid side chain to be in the water, or the relative affinity to the water was calculated using Boltzman distribution. Also, the protonated and deprotonated portions of a certain amino acid side chain were calculated using p$K_R$ of that and the effective protonated and deprotonated protions were the product of relative probability and the protonated and deproteonated protions. Where the total effective protonated portion was equal to the effective deprotonated portion of amino acid side chains, it was expected that oxidoreductases have max-imum activities. The optimum pHs calculated by our rule were compared with the experimental results.

본 논문에서는 산화 환원 효소의 최적 pH를 예측해 보았다. Boltzman 분배를 이용하여 어떤 아미노산의 side chain이 물에서 발견될수 있는 상대적 확률이나 물에 대한 상대적 친화력을 구하였으며 p$K_R$을 이용해 protonated 아미노산의 양과 deprotonated 아미소산의 양을 계산하였다. 효소의 최적 pH는 아미노산의 side chain이 물에서 발견될수 있는 상대적 확률과 protonated 또는 deprotonated된 아미노산 양의 곱인 유효 protonated된 양과 유효 depotonated된 양이 같아지는 pH로 예측하였다. 문헌 값과 비교해 보았을 때 예측치는 상당히 일치하는 경향을 보였으며 이 결과 로 효소 자체의 전도도가 생물학적 기능에 있어 매우 중요한 역할을 하는 것을 알 수있다.

Keywords

References

  1. Washabaugh, M. W.; Collins, K. D. J. Biol. Chem.1986, 261, 2477.
  2. Mitraki, A.; Betton, J. M.; Desmadril, M.; Yon, J. M.Eur. J. Biochem. 1987, 163, 29. https://doi.org/10.1111/j.1432-1033.1987.tb10732.x
  3. Mulkerrin, M. G.; Wetzel, R. Biochemistry 1989, 28,6556. https://doi.org/10.1021/bi00442a005
  4. Thannhauser, T. W.; Scheraga, H. A. Biochemistry 1985,24, 7681. https://doi.org/10.1021/bi00347a027
  5. Hickel, A.; Grauper, M.; Lehner, D.; Hermetter, A.;Glatter, O.; Griengl, H. Enzyme Microb. Technol. 1997,21, 361. https://doi.org/10.1016/S0141-0229(97)00010-0
  6. Palmer, T. Understanding Enzymes 4th ed.; Prentice Hall/Ellis Horwood: New York, NY, U.S.A., 1995.
  7. Weetall, H. H.; Pitcher, W. H. Science 1986, 232, 1396.
  8. Takashima, S.; Schwan, H. P. J. Phys. Chem. 1965, 69,4176. https://doi.org/10.1021/j100782a019
  9. Eden, J. P.; Gascoyne, R. C.; Pethig, R. J. Chem. Soc.Faraday Trans. 1 1980, 76, 426. https://doi.org/10.1039/f19807600426
  10. Bone, S.; Eden, J.; Pethig, R. Int J Quantum Chem: Quant Biol Symp. 1981, 8, 307.
  11. Hawkes, J. J.; Pethig, R. Biochim. Biophys. Acta 1988,952, 27.
  12. Morgan, H.; Pethig, R. J. Chem. Soc. Faraday Trans.1 1986, 82, 143. https://doi.org/10.1039/f19868200143
  13. Lawton, B. A.; Lu, Z. H.; Wei, Y.; Pethig, R. J. Mol.Liquids 1989, 42, 83. https://doi.org/10.1016/0167-7322(89)80027-3
  14. Careri, G.; Geraci, M.; Giansanti, A.; Rupley, J. A.Proc. Natl. Acad. Sci. USA 1985, 82, 5342. https://doi.org/10.1073/pnas.82.16.5342
  15. Careri, G.; Giansanti, A.; Rupley, J. A. Proc. Natl.Acad .Sci. USA 1986, 83, 6810. https://doi.org/10.1073/pnas.83.18.6810
  16. Rosenberg, B. Nature 1962, 193, 364. https://doi.org/10.1038/193364a0
  17. Maricic, S.; Pifat, G.; Pravdic, V. Biochim. et Biophysics.Acta 1964, 79, 293. https://doi.org/10.1016/0926-6585(64)90010-X
  18. Kyte, J.; Doolittle, R. F. J. Mol. Bio. 1982, 157, 105. https://doi.org/10.1016/0022-2836(82)90515-0
  19. Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of biochemistry 2nd ed., NewYork: Worth Publishers, U.S.A., 1993; pp.111-133.
  20. Carpenter, J. F.; Crowe, J. H. Biochemistry 1989, 28,3916. https://doi.org/10.1021/bi00435a044
  21. Prestrelski, S. J.; Tedeschi, N.; Arakawa, T.; Carpenter,J. F. Biophys. J. 1993, 65, 661. https://doi.org/10.1016/S0006-3495(93)81120-2
  22. Mishra, P.; Griebenow, K.; Klibanov, A. M. Biotechnol.Bioeng. 1996, 52, 609. https://doi.org/10.1002/(SICI)1097-0290(19961205)52:5<609::AID-BIT8>3.0.CO;2-N
  23. Griebenow, K.; Klibanov, A. M. Proc. Natl. Acad. Sci.USA 1995, 92, 10969. https://doi.org/10.1073/pnas.92.24.10969
  24. Griebenow, K.; Klibanov, A. M. Biotechnol. Bioeng.1997, 53, 351. https://doi.org/10.1002/(SICI)1097-0290(19970220)53:4<351::AID-BIT1>3.0.CO;2-M
  25. Yin, S. J.; Bosron, W. F.; Magnes, L. J.; Li, T. K. Biochemistry,1984, 23, 5847. https://doi.org/10.1021/bi00319a026
  26. Schneider-Bernlqhkwr, H.; Formicka-Kozlowska, G.;Brieler, R.; Wartburg, J. P.; Zeppezauer, M. Eur. J. Biochem.1988, 173, 275. https://doi.org/10.1111/j.1432-1033.1988.tb13995.x
  27. Bright, H.; Appleby, M. J. Biol. Chem. 1969, 244, 3625.
  28. Weibel, M.; Bright, H. J. Biol. Chem. 1971, 246, 2734.
  29. Maehly, A.; Chance, B. Methods of Biochemical Analysis I; Glick, D., Ed.; Interscience Publishers: New York, U.S.A., 1987; pp. 357-424.
  30. Maehly, A. Methods in Enzymology Vol II; Colowick, S., Kaplan, N., Eds.; Academic Press: New York, U.S.A., 1955; pp. 764-775.
  31. Meunier, B. Biochimie 1987, 69, 3. https://doi.org/10.1016/0300-9084(87)90266-5
  32. Shinmen, Y.; Amachi, T.; Asami, S.; Shimizu, S.; Yamada,H. Agric. Biol. Chem. 1986, 50, 247. https://doi.org/10.1271/bbb1961.50.247
  33. Wendel, A. Methods in enzymology. Vol. 77; Jakoby, W. B. Ed.; Academic press, New York, U.S.A., 1981; pp. 325-333.
  34. Baccanari, D.; Phillips, A.; Smith, S.; Sinski, D.; Burchall,J. Biochemistry 1975, 14, 5267. https://doi.org/10.1021/bi00695a006
  35. Shames, S. L.; Fairlamb, A. H.; Cerami, A.; Walsh, C.T. Biochemistry, 1986, 25, 3519. https://doi.org/10.1021/bi00360a007

Cited by

  1. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling vol.133, pp.3, 2008, https://doi.org/10.1016/j.jbiotec.2007.10.008