DOI QR코드

DOI QR Code

Anions as Connectors for Higher Dimensions. Silver(I) Trifuoracetate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine


Abstract

Trifluoroacetate anion as a connector has been studied on $AgCF_3CO_2$ with 3,3'-$Py_2X$(X=O vs S) produces 1 : 1 adducts of [Ag($CF_3CO_2$)(3,3'-$Py_2X<$)]. Crystallographic characterization of [Ag($CF_3CO_2$)(3,3'-$Py_2X$)](monoclinic $P2_1$a=7.383(1)$\AA$b=19.801(3)$\AA$c=9.297(3)$\AA$,$\beta$=$100.26(2)^{\circ}$,V=1337.4(5) $\AA^3$, Z=2, R=0.0386) reveals that the 3,3'-$Py_2O$ spacer connects two silver ions to give a single strand and that the single strands are linked via the trifluoroacetate anions in an "up and down even-bridge" to give an elegant molecular grid. The framework of [$Ag(CF_3CO_2)(3,3'-Py_2X)$](monoclinic $P2_1/c$a=8.331(2)$\AA$b=14.010(2)$\AA$,c=11.926(3 $\AA$$\beta$=$93.70(2)^{\circ}$=1385.1(6)$\AA^3$, Z=4, R=0.0589) is a single-strand. The single strands are connected via the trifluoroacetate anions in a double-bridge, resulting in a typical molecular chicken-wire. The trifluoroacetate anion as a connector appears to be primarily associated with its moderately coordinating ability. Their structural features have been discussed based on the anion exchangeability. Thermal analyses indicate that the compounds are stable up to approximately $200^{\circ}C$.

Keywords

References

  1. Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  2. Gale, P. A. Coord. Chem. Rev. 2001, 213, 79. https://doi.org/10.1016/S0010-8545(00)00364-7
  3. Beer, P. B.; Smith, D. K. Prog. Inorg. Chem. 1997, 46, 1. https://doi.org/10.1002/9780470166475.ch1
  4. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. https://doi.org/10.1021/cr9603845
  5. Lapointe, R. E.; Roof, G. R.; Abboud, K. A.; Klosin, J. J. Am. Chem. Soc. 2000, 122, 9560. https://doi.org/10.1021/ja002664e
  6. Mason, S.; Cliford, T.; Seib, L.; Kuczera, K.; Bowman-James, K. J. Am. Chem. Soc. 1998, 120, 8899. https://doi.org/10.1021/ja9811593
  7. Seppelt, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1025. https://doi.org/10.1002/anie.199310251
  8. Brown, R. A.; Pollet, P.; McKoon, E.; Eckert, C. G.; Liotta, C. L.; Jessop, P. G. J. Am. Chem. Soc. 2001, 123, 1254. https://doi.org/10.1021/ja005718t
  9. Reed, C. A. Acc. Chem. Res. 1998, 31, 133. https://doi.org/10.1021/ar970230r
  10. Campos-Fernandez, C. S.; Clerac, R.; Dunbar, K. R. Angew. Chem., Int. Ed. 1999, 38, 3477. https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3477::AID-ANIE3477>3.0.CO;2-P
  11. Turner, B.; Shterenberg, A.; Kapon, M.; Suwinska, K.; Eichen, Y. Chem. Commun. 2001, 13.
  12. Sharma, C. V. K.; Griffin, S. T.; Rogers, R. D. Chem. Commun. 1998, 215.
  13. Jung, O.-S.; Park, S. H.; Kim, D. C.; Kim, K. M. Inorg. Chem. 1998, 37, 610. https://doi.org/10.1021/ic971415x
  14. Jung, O.-S.; Park, S. H.; Park, C. H.; Park, J. K. Chem. Lett. 1999, 923.
  15. Jung, O.-S.; Park, S. H.; Lee, Y.-A.; Lee, U. Chem. Lett. 2000, 1012.
  16. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, J. K.; Chae, H. K. J. Am. Chem. Soc. 2000, 122, 9921. https://doi.org/10.1021/ja001618b
  17. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Chae, H. K.; Jang, H. G.; Hong, J. Inorg. Chem. 2001, 40, 2105. https://doi.org/10.1021/ic001072u
  18. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Yoo, K. H.; Chae, H. K. Bull. Korean Chem. Soc. 2001, 22, 534.
  19. Barker, D. M.; Summers, L. A. J. Heterocycl. Chem. 1983, 20, 1411. https://doi.org/10.1002/jhet.5570200550
  20. Summers, L. A. J. Heterocycl. Chem. 1987, 24, 533. https://doi.org/10.1002/jhet.5570240301
  21. Summers, L. A.; Trotman, S. J. Heterocycl. Chem. 1984, 21, 917. https://doi.org/10.1002/jhet.5570210360
  22. Pine, S. H.; Hendrickson, J. B.; Cram, D. J.; Hammond, G. S. Organic Chemistry, 4th ed.; McGraw Hill: Tokyo, 1980; p 207.
  23. Jung, O.-S.; Kim, Y. J.; Kim, K. M.; Lee, Y.-A. J. Am. Chem. Soc. 2002, 124, 7906. https://doi.org/10.1021/ja026774s
  24. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Yoo, K. H. Chem. Lett. 2002, 500.
  25. Sheldrick, G. M. SHELXS-97: A Program for Structure Determination; University of Gottingen: Germany, 1997
  26. Sheldrick, G. M. SHELXL-97: A Program for Structure Refinement; University of Gottingen: Germany, 1997.
  27. Jung, O.-S.; Park, S. H.; Kim, K. M.; Jang, H. G. Inorg. Chem. 1998, 37, 5781. https://doi.org/10.1021/ic980278g
  28. Dunne, S. J.; Summers, L. A.; von Nagy-Felsobuki, E. I. J. Heterocycl. Chem. 1992, 29, 851. https://doi.org/10.1002/jhet.5570290431
  29. Dunne, S. J.; Summers, L. A.; von Nagy-Felsobuki, E. I. J. Heterocycl. Chem. 1990, 27, 1787. https://doi.org/10.1002/jhet.5570270650
  30. Kim, Y. J.; Lee, Y.-A.; Park, K. M.; Chae, H. K.; Jung, O.-S. Bull. Korean Chem. Soc. 2002, 22, 1106.
  31. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, K.-M.; Lee, S. S. Inorg. Chem. in press.

Cited by

  1. Group 12 Metal Complexes of Semirigid 2,6-Pyridinediylbis(3-pyridinyl)methanone: Role of Counteranions and Solvent in Product Formation vol.13, pp.5, 2013, https://doi.org/10.1021/cg3017408
  2. Order of the coordinating ability of polyatomic monoanions established from their interaction with a disilver(i) metallacyclophane skeleton pp.28, 2005, https://doi.org/10.1039/b505919d
  3. Assembly of a Cyclic Dimer Silver(I) Complex Encapsulating Two BF4- Ions vol.24, pp.9, 2003, https://doi.org/10.5012/bkcs.2003.24.9.1393
  4. Precursory Ag-bipyridine 2D coordination polymer: a new and efficient route for the synthesis of Ag nanoparticles vol.12, pp.2, 2002, https://doi.org/10.1039/b908446k