3-Dimensional Terbium Coordination Polymers: $\mid \mathrm{Tb}_{4}\left(\mathrm{NDC}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mid \cdot \mathbf{2 H}_{2} \mathrm{O}\right.$ and $\left[\mathrm{Tb}_{2}(\mathrm{BPDC})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (NDC = 2,6-Naphthalenedicarboxylate; BPDC = 2,2'-Bipyridine-4,4'-dicarboxylate)

Dongwon Min and Soon W. Lee ${ }^{-}$
Deparment of Chemisny and School of Aolecular Science (BK2I), Sunghunkwan limetsity, Sinwon +40-746, Korea
Received April 1. 2002

Abstract

Three-dimensional terbium coordination polymers with the formulas of $\left[\mathrm{Tb}_{6}\left(\mathrm{NL}^{2}\right)_{6}\right)_{6}\left(\mathrm{I}_{2} \mathrm{O}\right)_{5} \cdot 2 \mathrm{~L}_{2} \mathrm{O}(1)$ and $\left[\mathrm{Ib}_{2}\left(\mathrm{Bl}^{\prime} \mathrm{CC}^{\prime \prime}\right)_{3}\left(\mathrm{I}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (2) ($\mathrm{NDC}=2,6$-naphthalenedicarboxylate: $\mathrm{Bl}{ }^{\prime} \mathrm{DC}=2,2^{\prime}$-bipyridine-4,4-dicarbosylate) were prepared by hydrothermal reactions. Both compounds were structurally characterized by X-ray diffraction. Compound I has a polymeric structure that contains four distinct Ib metals. Three Ib metals have a square-antiprismatic structure, and the remaining one has a 9-coordinate, triply capped trigonal-prismatic structure. Compound 2 is also a polymer with two distinct Ib metals, both of which have a square-antiprismatic structure. The pytidine nitrogen atoms of the $\mathrm{Bl}^{\prime} \mathrm{DC}^{--}$ligand do not coordinate to the metal centers in compound 2 .

Keywords: Terbium, Hydrohemal, 2,2'-Bipyridinc-4,4'-dicarboxylic acid, 2,6-Naphthalenedicarboxylic acid, Coordination polymer.

Introduction

There has been tremendous interest in designing and preparing functional solids based on metal-organic coordination networks. Over the past years, many of these networks have exhibited unique properties. including (functional group)- or size-selective sorption. catalysis, gas storage. and molecular recognition. ${ }^{116}$ The synthesis of coordination polymers containing transition metals has become widespread over the past decade. but there are few reports on lanthanide-metal coordination polymers.

Recently; the synthesis and structural characterization of lanthanum(lli)-carboxylate coordination polymers drew attentions. ${ }^{1-19}$ We have become interested in preparing coordination polymers with dicarboxylate ligands. For instance, we have obtained a $3-\mathrm{D}$ zinc. ${ }^{3 i} 3-\mathrm{D}$ cobalt. ${ }^{21} 2-\mathrm{D} \mathrm{Ni} .^{22} 1-\mathrm{D}$ $\mathrm{Cu},{ }^{-3} 2$-D lanthanmm. ${ }^{-4}$ and 2-D cobalt ${ }^{-5}$ coordination-polymers by hydrothermal reactions. As a continuation of our research. we set out to prepare terbium coordination polymers with 2.6-naphthalenedicarboxylic acid (NDCH_{2}) and 2.2^{\prime}-bipyri-dine-t. f^{\prime}-dicarboxylic acid (BPDCH_{2}). We report herein the preparation and crystal stmetures of two compounds. $\left[\mathrm{Tb}_{+}\left(\mathrm{NDC}_{4}\right)_{\left(\mathrm{H}_{2} \mathrm{O}\right.}\right)_{i} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1)$ and $\left[\mathrm{Tb}_{2}(\mathrm{BPDC})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (2).

Experimental Section

$\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. sodium acetate $\left(\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$, 2.6naphthalenedicarboxylic acid (NDCH_{2}) , and 2.2 '-bipyridine4. f^{\prime}-dicarbosylic acid (BPDCH_{2}) were purchased from Aldrich company: IR spectra were recorded with a Nicolet

[^0]205 FTIR spectrophotometer. Elemental analyses were performed with EAIllo (CE instrument. Italy) by the Korea Basic Science Institute. TGA analysis was conducted on a TA $4000 /$ SDT 2960 instrument.

Preparation of $\left[\mathrm{Tb}_{\mathbf{4}}\left(\mathrm{NDC}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}\right.$ (1). A mixture of $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g} .0 .229 \mathrm{mmol})$. $\mathrm{NDCH}_{2}(0.0496$ g. 0.229 mmol), and $1 \mathrm{~N} \mathrm{KOH}(0.575 \mathrm{~mL}, 0.575 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ in the mole ratio of $1.0: 1.0: 2.5$ was heated in a $23-\mathrm{mL}$-capacity Teflon-lined reaction vessel at $180^{\circ} \mathrm{C}$ for four days and then cooled to room temperature by air-cooling. The yellow product was collected by filtration. washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. and air-dried to give $\left[\mathrm{Tb}_{\lrcorner}\left(\mathrm{NDC}_{6^{-}}\right.\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$) $\cdot 2 \mathrm{H}_{2} \mathrm{O}(0.0613 \mathrm{~g} .0 .0302 \mathrm{mmol} .79 \%$ yield $)$. Anal. Calcd for $\mathrm{C}_{-2} \mathrm{H}_{48} \mathrm{O}_{31} \mathrm{~Tb}_{+}\left(1 / /_{\mathrm{r}}=2033.70\right)$: C. 42.5 : H. 2.38. Found: C. 42.3; H. 2.31. IR (KBr): 3449. $1602(\mathrm{C}=\mathrm{O}), 1547$ ($\mathrm{C}=\mathrm{O}$) . $1490(\mathrm{C}=\mathrm{O}) .1+17(\mathrm{C}=\mathrm{O}) .1356(\mathrm{C}=\mathrm{O}) .796 .773$. $40 \mathrm{~cm}^{-1}$.

Preparation of $\left[\mathrm{Tb}_{2}(\mathrm{BPDC})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (2). This polymer was prepared similar to polymer 1. A mixture of $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g} .0 .229 \mathrm{mmol}) . \mathrm{BPDCH}_{2}(0.0559 \mathrm{~g}$. 0.229 mmol) and $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.0779 \mathrm{~g} \cdot 0.573 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ in the mole ratio of $1.0: 1.0: 2.5$ was heated for two days to give $\left[\mathrm{Tb}_{2}(\mathrm{BPDC})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{i}\right] \cdot \mathrm{H}_{2} \mathrm{O}(0.06 \mathrm{I}+\mathrm{g} .0 .0550$ mmol. 72% yield). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{16 \mathrm{~T}} \mathrm{~Tb}_{2}\left(M_{\mathrm{r}}=\right.$ 1116.47): C. 38.7: H. 2.35; N. 7.52. Found: C. 38.9: H. 2.36; N. 7.54. IR (KBr): 3069. $1601(\mathrm{C}=\mathrm{O}) .1581(\mathrm{C}=\mathrm{O}) .1546$ $(\mathrm{C}=\mathrm{O}) .1+66(\mathrm{C}=\mathrm{O}) .1421(\mathrm{C}=\mathrm{O}), 1403.1383,776,707.688$ cm^{-1}.

X-ray Structure Determination. All X-ray data were collected with the use of Siemens P4 diffractometer equipped with a Mo X-ray tube and a graphite-plate monochromator. The orientation matrix and unit-cell parameters were determined by least-squares analyses of the setting angles of 25 (for 1) or 27 (for 2) reflections in the range of $10.0^{1}<2 \theta$

Table 1. X-ray data collection and structure refinement

	1	2
formula	$\mathrm{C}_{-3} \mathrm{H}_{4} \mathrm{O}_{31} \mathrm{~Tb}_{4}$	$\mathrm{C}_{31} \mathrm{H}_{3,} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{~Tb}_{3}$
fiv	2033.70	1116.47
temperature. K	296(2)	$295(2) \mathrm{K}$
crystal system	monoclinic	triclinic
space group	$P 2_{1}$: ${ }^{\prime}$	$P \overline{\mathrm{I}}$
a. A	17.101(1)	$11.3590(6)$
b. A	15.24.5(3)	12.197(1)
c. A	24.969(4)	14.2601(8)
人. deg	90.000	95.072(7)
β. deg	106.093(9)	$103.522(4)$
γ deg	90.000	$101.677(6)$
$1: \Lambda^{3}$	6254(2)	$1866.692)$
/	4	2
$d_{\text {cas }} \mathrm{g} \mathrm{cm}^{-3}$	2.160	1.986
H. mm^{-1}	4.570	3.843
$T_{\text {min }}$	0.0963	1). 4162
$T_{\text {max }}$	0.5591	0.7979
$1(000)$	3908	1084
2θ range (")	3.550	3.550
scan type	ω	ω
scan speed	variable	variable
No. of rellns measured	10694	6891
No. of rethes unique	10382	6527
No. of rethin with $3: 2 \pi / I)$	8893	6235
No. of params retined	965	572
Max.. in $\Delta \rho$ ($\mathrm{c}^{(}{ }^{3}$)	2.935	0.732
Min.. in $\Delta \rho$ ($\mathrm{c}^{\text {A }}{ }^{3}$)	-1.557	0.923
(GOF on $F^{\text {² }}$	1.035	1.083
R	0.0474	0.0220
$w R_{i}{ }^{\circ}$	0.1229	0.0578

$<25.0^{\circ}$. Three check-reflections were measured every 100 reflections throughout data collection and showed no noticeable variations in intensity. Intensity data were corrected for Lorenz and polarization effects. Decay corrections were also made. The intensity data were empirically corrected for absorption with ψ-scan data. Structures were solved by direct methods. All non-lydrogen atoms were refined anisotropically: All calculations were carried out with the use of the SHELXTL programs. ${ }^{\text {T }}$ Details on orystal data and intensity data are given in Table l. Selected bond distances and bond angles are given in Tables 2 and 3.

A yellow crystal of 1, shaped as a rod of approximate dimensions $0.52 \times 0.20 \times 0.18 \mathrm{~mm}^{3}$, was used. The unit-cell parameters and sy stematic absences, $h(l(h+l=2 n+1)$ and $0 h 0(k=2 n+1)$. unambiguously indicated $P 2_{1} / n$ as a space group. The water hydrogen atoms could not be located. The remaining hydrogen atoms were generated in ideal positions and refined in a riding model.

A colorless crystal of 2 . shaped as a block of approximate dimensions $0.50 \times 0.50 \times 0.36 \mathrm{~mm}^{3}$, was used. The unit-cell parameters indicated a triclinic unit cell with the two possible space groups: $P 1$ and $P \overline{1}$. A statistical analysis of reflection intensities suggested a centrosymmetric space group. and the structure analysis converged only in $P \overline{1}$. The water hydrogen atoms were located in the difference Fourier maps and refined isotropically. The remaining hydrogen atoms were generated in ideal positions.

Crystallographic data for the structures reported here have been deposited with the Cambridge Crystallographic Data Center (Deposition No. CCDC-182885 for 1 and CCDC$18288+$ for 2). The data can be obtained free of charge via http://hww.cedc.cam.ac.uk/perl/catreq/catreq.cgi (or from

Table 2. Selected bond distances (\AA) and bond angles (") in 1

Tbl-()1	$2.306(5)$	Tbl-03	2.314(4)	Tbl-()18	$2.339(4)$
Tbl-()10	$2.362(5)$	Tbl-0\%	$2.375(5)$	Tbl-()16	$2.418(5)$
Tbl-(225	$2.513(6)$	Tbl-(029	2.713 (4)	Tb2-()21	$2.297(5)$
$\mathrm{Tlb2-O7}$	2.330(5)	Tb2-(0)	$2.337(5)$	Tb2-()2	2.345 (5)
Tb2-()15	2.347(5)	Tb2-05	$2.36 .4(4)$	Tb2-()28	$2.409(5)$
$\mathrm{Tl} 2-\mathrm{O} 1$	2.899(5)	Tb 3 -(023	$2.289(5)$	Tb3-()8	2.313(5)
Tb3-()22	$2.327(5)$	Tbi-019	2.349 (5)	Tb3-()I,	$2.354(5)$
Tb3-()12	$2.368(5)$	Tb.-()27	$2.482(6)$	Tb3-()20	$2.880(5)$
Thet-()17	2.325(4)	Tb4-(20)	$2.327(5)$	T104-()4	2.3.31(5)
Tly -()24	2.354(5)	Tb4-()II	$2.370(5)$		$2.429(4)$
Thy-()26	2.471 (5)	Tb4-(0)291	$2.651(4)$	$\mathrm{Tb}(4)-\left({ }^{(23)}\right.$	$2.905(5)$
Ol-Tbl-O3	146.1(2)	Ol-Tbl-018	86.3(2)	O3-Tbl-O18	$90.7(2)$
Ol-Tbl-06	76.5 (2)	03-Tb1-06	135.3 (2)	O18-Tbl-06	76.2(2)
010-Tbl-025	139.8(2)	O6-Tbl-025	138.8(2)	O16-Tbl-025	73.1 (2)
O7-Tb2-09	151.9(2)	O2l-Tbe-O2	125.3(2)	O7-Tb2-02	75.4(2)
O9-Tb2-015	76.0(2)	O2-Tb2-O15	78.1(2)	O21-Tb2-O5	146.2(2)
O15-Tb2-05	131.00 (2)	O21-Tb2-O28	76.2(2)	O7-Tb2-028	75.9 (2)
O8-Tb3-O19	123.8(2)	O22-Tb3-019	75.9 (2)	O23-Tb3-O13	77.1(2)
O23-Tb3-O12	81.6(2)	O8-Tb3-O12	151.6(2)	O22-Tb3-O12	86.8(2)
O17-Tb4-020	145.9(2)	O17-Tb4-O4	90.0(2)	O20-Tb4-O4	87.2(2)
O17-Tb4-O11	137.1(2)	O20-Tb4-O11	75.4(2)	O4-Tb4-Oll	78.8 (2)

[^1]Table 3. Selected bond distances (\AA) and bond angles (") in 2

Tbl-O12	2.292(2)	Tbl-02	$2.318(2)$	lbl-og	$2.339(2)$
Tbl-(015	2.351 (3)	Tbl-011	$2.365(2)$	lbl-08	2.424(2)
Tbl-()14	$2432(2)$	Tbl-07	2.541(2)	Tb2-04	$2.253(2)$
$\mathrm{Tb} 2-(\mathrm{Ol}$	2.314(2)	$1 \mathrm{~b} 2-010$	$2.316(2)$	Tb2-03	$2.333(2)$
Tb2-(97	$2.426(2)$	$162-013$	$2.436(2)$	Tb2-05	2.441 (2)
Tb2-()6	$2.745(2)$				
O12-Tbl-O2	82.7(1)	O12-Tb1-06	85.27(8)	O2-Tbl-06	73.71(9)
O12-Tbl-O15	98.5 (1)	O2-Tbl-O15	143.1(1)	O6-Tbl-O15	69.6(1)
O12-Tbl-O11	83.31 (8)	O2-Tbl-O11	69.26 (8)	O6-Tbl-O11	142.30(8)
O12-Tbl-O14	77.64 (9)	O2-Tbl-O14	140.55(9)	O6-Tbl-O14	136.95(9)
$\mathrm{O} 4-\mathrm{Tb} 2-\mathrm{O} 1$	86.46 (8)	O4-Tb2-O10	96.49(9)	Ol-Tb2-O10	147.96(8)
$\mathrm{O} 4-\mathrm{Tb} 2-03$	98.44(8)	O1-Tb2-O3	140.04(8)	O10-Tb2-O3	71.25 (8)
O4-Tb2-05	$74.52(8)$	O1-Tb2-O5	75.14(8)	O10-Tb2-05	74.98(9)

the CCDC. 12 Union Road. Cambridge. CB2 IEZ. UK: fax: $+4+1223336033$: e-mail: deposit $(\mathrm{ccc}(\mathrm{c} . \mathrm{cam} . a \mathrm{a} . \mathrm{uk})$.

Results and Discussion

Preparation. Compounds have been prepared by hydrothemal reactions. Terbium(llI) nitrate reacts with NDCH_{2} in the presence of KOH at $180^{\circ} \mathrm{C}$ to give $\left[\mathrm{Tb}(\mathrm{NDC})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right.$. $2 \mathrm{H}_{2} \mathrm{O}$ (1), a 3-D polymer Terbium(lll) nitrate also reacts with BPDCH_{2} in the presence of $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at $180^{\circ} \mathrm{C}$ to give $\left[\mathrm{Tb}_{2}(\mathrm{BPDC})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (2). another 3-D polymer. We added the base to accelerate the reaction by deprotonating COOH groups. Very recently. Li and co-workers reported the effect of pH on the dimensionality of coordination polymers. ${ }^{-{ }^{-}}$According to their work, increasing pH leads to the ligher connectivity of the ligand and ultimately structures of higher dimensions.

Both crystalline compounds have been characterized by elemental analysis. IR spectroscopy, thermogravimetric analysis, and X-ray diffraction. The \mathbb{R} spectrum of $\mathbf{1}$ exhibits peaks at $1602.15+7,1+90,1417$. and $1356 \mathrm{~cm}^{-1}$ that can be assigned to the asymmetric and symmetric $\mathrm{C}=\mathrm{O}$ stretches. ${ }^{28.29}$ The IR spectrum of 2 also shows strong peaks characteristic of carboxylate groups at 1601, 1581. 1546. 1466. and 1+21 cm^{-1}. Themogravimetric analysis (TGA) shows that compound 1 loses 5.1% of its mass between 136 and $190^{\circ} \mathrm{C}$. corresponding to the loss of five aqua ligands and two free water molecules (calculated 6.2%). Above $517^{\circ} \mathrm{C}$, the second process occurs with the loss of the ligands. The TGA for 2 shows a weight loss corresponding to four aqua ligands (observed 7.9%, calculated 6.4%) in the temperature range of $198-372^{\circ} \mathrm{C}$. Above $475^{\circ} \mathrm{C}$. the second process occurs with the loss of organic ligands.

Structure. The monomeric unit of polymer 1 is shown in Figure 1. Compound 1 exhibits a three-dimensional structure. which contains four crystallographically independent terbium ions with four distinct coordination geometries. The formal oxidation state of each terbium metal is +3 . Three Tb metals (Tbl, Tb2. and Tb3) have an 8-coordinate. square-antiprismatic structure. The remaining Tb metal ($\mathrm{Tb}+$) has a 9 coordinate triply capped trigonal-prismatic structure.

Figure 1. An ORIEP drawing of 1.

Figure 2. Ball-stick representation of compound 1 down the a-axis. Oxgen atoms are represented as gray circles, terbium atoms as closed circles, and carbon atoms as open circles.

Tb1

Tb3

Tb2

Tb4

Chart 1. Coordination modes of tb metals in 1 .
Adjacent Tb centers are bridged by two CO_{2}^{-}groups (Tb2 $\cdots \mathrm{TB} 3$ and $\mathrm{Tb} 1 \cdots \mathrm{~TB} 4$) or four $\mathrm{CO}_{2}{ }^{-}$groups ($\mathrm{Tbl} \cdots \mathrm{TB} 2$ and $\mathrm{Tb} 3 \cdots \mathrm{~TB} 4$) to result in an infinute 1 -D chain in the a-axis direction (Figure 1). These chains are cross-linked by the NDCㄹ- ligands to form a three-dimensional network (Figure 2). The local coordination geometry around Tbl is an 8coordinate, square antiprism (Chart 1). Among the eight oxygen atoms bonded to the Tbl ion. two come from aqua ligands. and six come from six bridging CO_{z}^{-}groups. One aqua ligand (O29) links the Tb metals by acting as a $\mu-\mathrm{O}$ bridging ligand. The square-antiprismatic core comprises two squares (square 1: O3, O18, O25. and O29: square 2: O1. O6. O10. and O16) with their dihedral angle of $+.0(2)^{\circ}$.
The coordination geometry of Tb2 is also an 8 -coordinate. square antiprism. Among the eight oxygen atoms bonded to the Tb 2 metal. one comes from one aqua ligand. two from one chelating CO_{2}^{-}group, and five from five bridging CO_{2}^{-} groups. The square-antiprismatic core comprises two squares (square 1: O1, O2, O5, and O7: square 2: O9. O15.O21. and O 28) with their dihedral angle of $12.7(2)^{\circ}$. The Tb 3 metal also has a square-antiprismatic structure with eight oxygen atoms. which consist of one from one aqua ligand, two from one chelating CO_{-}^{-}group, and five from five bridging CO_{2}^{-} groups. The square-antiprismatic core consists of two squares (square 1: O12, O20. O23, and O27: square 2:08. O13, O19. and O 22) with their dihedral angle of $9.5(2)^{\circ}$. Interestingly. the coordination geometry of $\mathrm{Tb}+$ is a 9 -coordinate. triply capped trigonal-prism. Nine oxygen atoms bonded to the $\mathrm{Tb}+$ ion consist of two from aqua ligands. two from one chelating CO_{2}^{-}group. and five from five bridging CO_{2}^{-}groups. The trigonal-prismatic core comprises two triangles (triangle I: $\mathrm{O} 4 . \mathrm{Oll}$. and O 20 ; triangle 2: $\mathrm{Ol}+\mathrm{O}$. 1 , and $\mathrm{O} 2+$) with their diledral angle of +3 .3 (2) . Three oxygen atoms (O23. O26. and O 29) act as capping agents on the rectangular faces.
The $\mathrm{Tb}-\mathrm{O}$ bond distances exhibit an extremely wide range of $2.289(5)-2.905(5) A$ and have a much ligher range than those reported for $\mathrm{Tb}(\text { isonicotinate })_{s}\left(\mathrm{H}_{2} \mathrm{O}\right)=(2.282(6)-2.450$

Figure 3. An ORTF.P drawing of 2.
(5) A$)^{3 i}$ and $\mathrm{Na}_{1} \mathrm{~K}_{2} \mathrm{~Tb}_{2} \mathrm{Si}_{16} \mathrm{O}_{28} \times 1 \mathrm{OH}_{2} \mathrm{O}(2.23(2)-2.38(1) \mathrm{A}) .{ }^{31}$ It is worth noting that three oxygen atoms (O1. O20) and O 23) in the $\mathrm{CO}_{2}{ }^{-}$groups act as asymmetric μ_{2} - O ligands between Tb metals ($\mathrm{Tb} 1 \cdots \mathrm{~TB} 2 . \mathrm{Tb} 3 \cdots \mathrm{~TB} 4$. and $\mathrm{TB} 3 \cdots \mathrm{~TB} 4$. respectively). The extrenely long $\mathrm{Tb}-\mathrm{O}$ bonds in the asymmetric $\mathrm{Tb}-\mathrm{O}-\mathrm{Tb}$ bridges are represented by dotted bonds in Figure 1: Tb2-O1 (2.899(5) A). Tb3-O20 (2.880(5) A) and $\mathrm{Tb}+\mathrm{O} 23$ ($2.905(5) \mathrm{A}$).

The bonding parameters mentioned above suggest the flexibility in the coordination of terbium ions. which might have facilitated the formation of infinite frameworks of polymer 1 with unustual coordination numbers and geometries. The very long $\mathrm{Tb} \cdots \mathrm{Tb}$ distances $\{\mathrm{Tbl} \cdots \mathrm{Tb} 2: 4.066(0): \mathrm{Tb} 2$ $\cdots \mathrm{Tb} 3: 5.192(1): \mathrm{Tb} 3 \cdots \mathrm{~Tb}+4.054(0) \mathrm{A}$) indicate no direct $\mathrm{Tb}-\mathrm{Tb}$ interactions. The erystal structure of polymer 1 shows an extended one-dimensional channel of about 4.78×4.19 A along the c axis. Water guest molecules are packed into the channels in the crystal structure.

The monomeric unit of $\mathbf{2}$ is illustrated in Figure 3. Compound 2 contains two crystallographically independent terbium ions with two distinct coordination geometries. The formal oxidation state of each terbium metal is +3 . One

Figure 4. Ball-stick representation of compound 2 down the c-avis. Nitrogen atoms are represented as closed circles, terhium atoms as crossed gray circles, oxygen atoms as gray circles, and carbon atoms as open circles.

Chart 2. Coordnation modes of Tb metals in 2 .
oxygen atom (O6) in the CO_{2}^{-}group links the Tb metals, acting as an asymmetric bridging ligand to give two very different $\mathrm{Tb}-\mathrm{O}$ bond distances (Tbl-O6: $2.339(2) \mathrm{A}: \mathrm{Tb} 2-$ O6: $2.745(2) \mathrm{A}$). Interestingly. the BPDC^{--}ligand acts as a tetradentate ligand without involving the pyridine nitrogen atoms in bonding to the terbimm metal. The very long $\mathrm{Tbl}{ }^{\cdots}$ Tb 2 distance of $4.055(0) \mathrm{A}$ indicates no direct $\mathrm{Tb}-\mathrm{Tb}$ interactions.

Both Tb metals have a square-antiprismatic structure. The local coordination geometry around Tbl can be described as 8 -coordinate, square-antiprismatic (Chart 2). Eight oxygen atoms bonded to the Tbl ion are composed of two from aqua ligands, two from one chelating CO_{2}^{-}group. and four from four bridging CO_{2}^{-}groups. The square-antiprismatic core comprises two squares (square 1: O2. O7. O8. and Oll: square 2: O6, O12. Ol4. and O15) with their dihedral angle of $2.5(0.1)^{\circ}$. The Tb 2 ion is coordinated by eight oxygen atoms, which consist of one from one aqua ligand, two from one chelating CO_{2}^{-}group, and five from five bridging CO_{2}^{-} groups. The square-antiprismatic core comprises two squares (square l: Ol. O6, O7. and O13: square 2: O3. O4, O5. and Ol0) with their dihedral angle of $8.8(2)^{\circ}$.

Figure 4 shows an extremely complicated 3-D polymeric structure of 2 . Among the $\mathrm{CO}_{2}{ }^{-}$oxygen atoms. only one oxygen atom (O 9) does not bond to Tb and participates in the intramolecular $015-\mathrm{H}^{\cdots} \mathrm{O} 9$ hydrogen bond as a hydro-gen-acceptor. The remaining CO_{2}^{-}oxygen atoms bond to Tb metals and link them to produce a polymeric structure. Whereas two oxygen atoms (O6 and O7) directly link the Tb metals by acting as $\mu_{-}-()$bridging ligands. three aqua ligands (O13. O14. and O15) and nine CO_{-}^{-}oxygen atoms (OI-O5. $\mathrm{O8}$, and $\mathrm{Ol} 0-\mathrm{Ol} 2$) bond to only one Tb metal. The crystal structure of polymer 2 shows an extended one-dimensional channel of about $3.99 \times 7.25 \mathrm{~A}$ along the c axis. Water guest molecules are packed into the channels in the crystal structure.
In summary: two three-dimensional coordination polymers. $\left[\mathrm{Tb}_{4}(\mathrm{NDC})_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)_{j} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1)\right.$ and $\left[\mathrm{Tb}_{2}(\mathrm{BPDC})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (2), have been synthesized by the hydrothermal reaction in relatively ligh yields. The structure of polymer $\mathbf{1}$ is unique in that it contains four distinct 8 - or 9 -coordinate Tb ions with a different coordination enviromment for each Tb : three square-antiprisms and one triply capped trigonal-prism. Polymer 1 has a small channel of about $+78 \times+.19 \mathrm{~A}$. Polymer 2 contains two distinct 8 -coordinate. square-antiprismatic Tb ions, and has a relatively small channel of about $3.99 \times 7.25 \mathrm{~A}$.

Acknowledgment. This work was supported by the Brain Korea 21 Project.

References

1. Swieger G. F.: Maleletse. T. J. Chem. Rev 2000. 100.3483.
2. Macdonald. I. C.: Dorrestein. P. C.: Pillev. M. M.: Foote. M. M.: Lundberg. I. L.: Heming. R, W.: Schultz. A. J.: Manson. J. L. J. tm. (hem. Soc. 2000, 122, 11692.
3. Ji, M.: Fddaoudi, M.: OKcette. M.: Yaghi. O. M. Fature 1999. 402, 276
4. Huang. X. Y. J. Coord. Chem. 1999. 47.269.
5. Braga. D.: Grepioni. F. Coord. Chmm. Rev 1999. 183. 19.
6. Reineke. T. M.: Eddaoudi. M.: OKeelle. M.: Yaghi. O. M. Angen: (\%em. Hht. F.d. Fhgl 1999. 38. 2590.
7. Fvans, O. R.: Xiong. R.-G.: Wang. 7.: Wong. G. K.: I.in. W. Angew. (hem. Int. F.d. Engl 1999. 38, 536.
8. Evans. O. R.: Wang. L.: Xiong. R.-G.i. Foxman. B. M.: Lin. W. fnorg, Chem. 1999. 38. 2969.
9. Blake. A. J.: Champness. N. R.: Hubberstey. I':. Li. W.-S.: Withersby. M. A.: Schroder. M. C'oord. (hem. Rev 1999. /83, 117.
10. I Iagrman, P. J.: I Iagrman, D.: 7ubicta, J. Ingew. (hem.. Iht. Ed. Ehgl $1999.38,2638$.
11. Yaghi. O. M.: Li. H.: Davis. C.: Richardson. D.: Groy. 'I. L. Acc. Chem. Res, 1998.31.474.
12. Brage D.: Grepioni. F.: Desiraju. G. R. Chem. Rev 1998. 05.1375.
13. I.in, W.: Fxans, O. R.: Xiong. R.-G.: Wang. 7. J. Im. ('hem. Soc. 1998. /20. 1.3272
14. Yaghi, O. M.: Davis. C. Г..: I.i, G.: I.i. H. J. Im. (Hem. Soc. 1997. H9. 2861.
15. Abrahams. B. F.: Hoskins. B. F.: Michall. D. M.: Robson. R. Nafme 1995. 374. 727.
16. Gardner, G. B.: Venkataraman, D.: Moore. J. S.: I.ee, S. Vafure 1995, 37t. 792
17. Reinche, T. M.: Fddanudi. M.: Fehr, M.: Kellex: D: Yaghi, O. M. J. Am. C/hem. Soc. 1999.121.1651
18. Baggio. R.: Garland. M. Г.: Perec. M.: Vega. D. Inorg. Chem. 1996. 35. 2396.
19. Wang. S.: Pang. 7..: Smith. K. D. I..: Wagner, M. J. .J. Chem. Soc. Dalton Troms 1994. 955
20. Min, D.: Yoon, S. S.: J.ee. C. Y.: Suh. M.: Hwang. Y.-J.: Han. W S.: Lee. S. W. Bull. Konem Chem. Soc. 2001. 22. 531.
21. Min. D.: Yoon. S. S.: Lee. J. H.: Suh. M.: Lee. S. W. Inorg. Chem. Commum, 2001. t. 297.
22. Min, D.: Yoon, S. S.: Jee, C. Y.: Ilan, W. S.: Tee. S. W. Bull. Konean (hem. Soc 2001, 22. 1041
23. Min, D.: Yoon, S. S.: Jung. D. Y.: I ee, C. Y.: Kim, Y.: Fan. W. S.: Lee. S. W. hong. Chim. Acta 2001. 324. 293.
24. Kim. H. J.: Min. D.: Hoe. H. S.: Lee. S. W. J. Koream Chem. Soc. 2001. 15. 507.
25. Mm, D.: Yexi, S. S.: J.ce. S. W. Horg (hem. Commhm. 2002. 5 143
26. Bruker, S//F/L.1Th., Structure Determination Sotware Programs: Bruker Analytical X-ray Instruments Inc.: Madison. Wisconsin. USA. 1997.
27. Pan. L.: Frydek. T.: Sander. M. B.: Huang. X.: Li. J. Inorg. Chem. 2001, to, 1271
28. Mehrotra, R. C.: Bohra, R. ./etal (arhorylates: Acadcmic Press: New York, 198.3.
29. Gordon. A. J.: Ford. R. A. The Chemist's Companion: A Handbook of I'ractical Data, Techmignes, and References. Wiley: New York. 1972
30. Ma, I.: Fvans, O. R.: Foxmam, B. M.: I in, W. Inome (hem. 1999. 38.58 .37
31. Ananias, D.: Ferreita, A.: Rocha, J.: Ferrera, P.: Rainho. I. P.: Morais. C.: Carlos. L. D. J. Am. Chem. Soc. 2001. 123. 5735.

[^0]: *Corresponding author Phone: $+82-31-290-7066$, Fax: $+82-31-$ 290-7075, F--mail: swlee σ chem skkuac. k т

[^1]: Symmetre translormations used to generate equivalent atoms: $1-x$ । $1 . y$ z

