DOI QR코드

DOI QR Code

Geometries and Relative Stabilities of AlN Four-Membered-Ring Compound Isomers: Ab initio Study

  • Park, Sung-Soo (CAMD Research Center, Soong Sil Univ.) ;
  • Lee, Kee-Hag (Department of Chemistry, Wonkwang University) ;
  • Suh, Young-Sun (Department of Chemistry, Wonkwang University) ;
  • Lee, Chang-Hoon (Department of Chemistry, Wonkwang University) ;
  • Luthi, Hans P. (Laboratory of Physical Chemistry)
  • 발행 : 2002.02.20

초록

Using ab initio method, we have studied the structural stabilities, the electronic structures and properties between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry of AlN four-membered-ring single precursors $[Me_2AlNHR]_2$ (R = Me, $^iPr$, and $^iBu$). In the viewpoint of bond lengths in optimized structures, the N-C bonds are considerably affected by the change of the R groups bonded to nitrogen, but the bonding characters of the Al-N and Al-C bonds are little affected. Also the structural stabilities between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry by using Hartree-Fock (HF) and the second order Moeller-Pleset (MP2) calculations agree well with the experimental results for the relative stability of bis(dimethyl- m-isopropylamido-aluminum) (BDPA) and bis(dimethyl- m-t-butylamido-aluminum) (BDBA), while the semiempirical AM1 and PM3 calculations for BDPA were reverse. Thus, our results may aid in designing an optimum precursor for a given process by explaining the experimental results through the elimination of the R groups bonded to nitrogen.

키워드

참고문헌

  1. Gabe, E.; Le Page, Y. Phys. Rev. 1981, B24, 5634
  2. Kobayashi, A.; Sankey, O. F.; Volz, S. M.; Dow, J. D. Phys. Rev. 1983, B28, 935
  3. Olson, C. G.; Sexton, J. H.; Lynch, D. W.; Bevolo, A. J.; Shanks, H. R.; Harmon, B. N.; Ching, W. Y.; Wieliczka, D. M. Solid State Commun. 1985, 56, 35 https://doi.org/10.1016/0038-1098(85)90528-9
  4. Awad, M. K.; Anderson, A. B. Surface Sci. 1989, 218, 543 https://doi.org/10.1016/0039-6028(89)90167-2
  5. Mayer, T. M.; Rogers, Jr., J. W.; Michalske, T. A. Chem. Mater. 1991, 3, 641. https://doi.org/10.1021/cm00016a016
  6. Bartram, M. E.; Michalcke, T. A.; Rogers, Jr., J. W.; Mayer, T. M. Chem. Mater. 1991, 3, 953. https://doi.org/10.1021/cm00017a035
  7. Gaskill, D. K.; Bottka, N.; Lin, M. C. J. Cryst. Growth 1986, 77, 418. https://doi.org/10.1016/0022-0248(86)90332-5
  8. Zanella, P.; Rossetto, G.; Brianese, N.; Ossola, F.; Porchia, M.; Williams, J. O. Chem. Mater. 1991, 3, 225. https://doi.org/10.1021/cm00014a008
  9. Ho, K. L.; Jensen, K. F. J. Cryst. Growth 1991, 107, 376. https://doi.org/10.1016/0022-0248(91)90489-R
  10. Bowen, R. E.; Gosling, K. J. Chem. Soc. Dalton Trans. 1974, 964.
  11. Amirkhalili, S.; Hitchcock, P. B.; Smith, J. D. J. Chem. Soc. Dalton Trans. 1979, 1206.
  12. Amirkhalili, S.; Hitchcock, P. B.; Jenkins, A. D.; Nyathi, J. Z.; Smith, J. D. J. Chem. Soc. Dalton Trans. 1981, 377
  13. Al-Wassil, A.-A. I.; Hitchcock, P. B.; Sarisaban, S.; Smith, J. D.; Wilson, C. L. J. Chem. Soc. Dalton Trans. 1985, 1929
  14. Haiduc, I.; Sowerby, D. B. The Chemistry of Inorganic Homoand Heterocycles; Academic Press: London, 1987; Vol 1
  15. Sauls, F. C.; Interrante, L. V.; Jiang, Z. Inorg. Chem. 1990, 29, 2989. https://doi.org/10.1021/ic00341a028
  16. Interrante, L. V.; Carpemter II, L. E.; Whitmarsh, C.; Lee, W.; GarbauskasSlack, G. A. Mat. Res. Soc. Symp. Proc. 1986, 73, 359.
  17. Interrante, L. V.; Lee, W.; McConnell, M.; Lewis, N.; Hall, E. J. Electrochem. Soc. 1989, 136, 472 and references therein https://doi.org/10.1149/1.2096657
  18. Boyd, D. C.; Haasch, R. T.; Mantell, D. R.; Schulze, R. K.; Evans, J. F.; Gladfelter, W. T. Chem. Mater. 1989, 1, 119 https://doi.org/10.1021/cm00001a023
  19. Park, J. T.; Lee, J.-K.; Kim, S.; Sung, M. M.; Kim, Y. Bull. Korean Chem. Soc. 1993, 14, 163 and references therein.
  20. Park, S. M.; Boo, B. H.; Kim, Y.; Park, J. T.; Koyano, I. Jpn. J. Appl. Phys. 1995, 34, L933. https://doi.org/10.1143/JJAP.34.L933
  21. Sung, M. M.; Jung, H. D.; Lee, J.-K.; Kim, S.; Park, J. T.; Kim, Y. Bull. Korean Chem. Soc. 1994, 15, 79
  22. Stoll, S. L.; Barron, A. R. Chem. Mater. 1998, 10, 650 https://doi.org/10.1021/cm970638i
  23. Ni, H.; York, D. M.; Bartolotti, L.; Wells, R. L.; Yang, W. J. Am. Chem. Soc. 1996, 118, 5732. https://doi.org/10.1021/ja951706+
  24. Okamoto, Y. J. J. Crystal Growth 1998, 191, 405. https://doi.org/10.1016/S0022-0248(98)00160-2
  25. Timoshkin, A. Y.; Suvorov, A. V.; Bettinger, H. F.; Schaefer III, H. F. J. Am. Chem. Soc. 1999, 121, 5687. https://doi.org/10.1021/ja983408t
  26. Reinhardt, S.; Gastreich, M.; Marian, C. M. Phys. Chem. Chem. Phys. 2000, 2, 955. https://doi.org/10.1039/a908247f
  27. Timoshkin, A. Y.; Bettinger, H. F.; Schaefer III, H. F. J. Crystal Growth 2001, 222, 170. https://doi.org/10.1016/S0022-0248(00)00903-9
  28. Lee, K. H.; Park, S. S.; Lee, H. M.; Park, S. J.; Park, H. S.; Lee, Y. S.; Kim, Y.; Kim, S.; Jo, C. G.; Eun, H. M. Bull. Korean Chem. Soc. 1998, 19, 1314
  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh PA, 1998
  30. Park, J. T.; Oh, W. T.; Kim, Y. Bull. Korean Chem. Soc. 1996, 17, 1147