Synthesis of 3-(Arylmethylene)-1,5-benzodiazepin-2-ones from Baylis-Hillman Acetates

Jeong Mi Kim, Ka Young Lee, and Jae Nyoung Kim ${ }^{*}$
Department of Chemistry and Institue of Basic Science, Chonnam National University, Kwangin 500-757, Korea Received Jufte +, 2002

Key words: 1,5-Benzodiazepine, Baylis-F Illman acetate, Benzimidazole

Seven-membered heterocyeles with two heteroatoms in a 1,4-relationship are known to possess many biological activities. Particularly, aryl-annelated $|1,4|$ diazepine and $\mid 1,4$ |oxazepine are crucial moicties in many psychoactive pharmaceuticals. ${ }^{1.2}$ 6-Benzylidene-oxazepane-5,7-dione is known as a valuable chiral intermediate. ${ }^{3}$ Arylmethylene benzodiazepinones have been used for the synthesis of pesticidal pyrazolobenzodiazepines and thiazinobenzodiazepines. ${ }^{+}$Besides of these papers, numerous reports have been reported regarding the synthesis or biological activity of benzodiazepines' or dibenzodiazepines. ${ }^{2}$ Recently, Reiser et al. have reported combinatorial liquid-phase synthesis of |1,4|oxazepin-7-ones via the Baylis-F Iillman reaction. ${ }^{5}$

In these respects, we intended to prepare some 3 -(aryl-methylene)-1,5-benzodiazepin-2-one derivatives from the Baylis-l lillman acetates. The reaction of the Baylis-Itillman acetate $\mathbf{1 a}$ and 1,2 -phenylenediamine (2) in acetonitrile in the presence of potassium carbonate gave the allylic substitution product $3 a^{6}$ (Scheme 1). The E and Z-form of 3 a could be separated easily. I leating of pure 3 a- E in acetic acid afforded a mixture of $4 a^{6}$ and $5 a^{6}$ (Scheme 2). The yield of desired 3-(benzylidene)-1,5-benzodiazepin-2-one (4a) was moderate (36%). Instead, the benzimidazole-substituted compound $5 a$ was isolated in 34% yield.

To improve the yield of the desired benzodiazepine

Scheme 1

Scheme 2

Scheme 3
derivative 4a. we examined other carboxylic acid solvent such as propionic acid. Formic acid and trilluoroacetic acid as shown in Table I. However, we could not improve the yield of $\mathbf{4 a}$. In all cases, except for formic acid, differently substituted benzimidazole-substituted derivatives, $\mathbf{5} \mathbf{b}$ and 5e, were isolated in variable yields. It is interesting to note that the use of formic acid gave neither the corresponding benzodiazepine nor benzimidazole derivatives. Instead, di-

Table 1. Synthesis of 3-benzylidene-1.5-benzodiazepin-2-one derivalives

fomml derivative 6 was fonmed in good yield. In fonmic acid N-fonmylation proceeded easily at the two nitrogen atoms, thus preventing the next cyclization toward benzodiazepine or benzimidazole.

The reaction of acetic acid and Z-form of 3 a gave the benzimidazole derivative 5 d as the sole product $(66 \%$. entry 5). We could not isolate the corresponding berzodiazepine compound +b at all. We could not explain the reason at this stage. The reaction of $\mathbf{3 b}-E$ in acetic acid or in propionic acid gave the similar results (entries 6 and 7).
mproved synthesis of benzodiazepine derivative ta was finally carried out by using l.3-dicyclohexy lcarbodimide (DCC) method for the amide bond fommation. Hydrolysis of 3a- $-E$ with sodium hydroxide gave the corresponding acid derivative in 97% yield. Fomation of the amide bond by using DCC in THF (rt, 3h) afforded ta in 83% yield (Scheme 3).

Acknowledgment. This work was supported by the grant (No. R05-2000-000-0007t-0) from the Basic Research Program of the Korea Science \& Engineering Foundation.

References and Notes

I. (a) Jee, J.: Gauther, D.: Rivero. R. A. J. Org. Chem. 1999.64. 3060. (b) Kraus. G. A.: Liu. P. Tetrohedron hett. 1995. 36. 7595.
2. (a) Levy. O.: Erez. M.: Varon. D.: Keinan. E. Bioorg . Hed (hem. I.eft. 2001. /t. 2921. (b) Liao. Y.: Venhuis. B. J.: Rodenhuis. N.: Timmeman, W.: Wikstrom, II. Meicr, F.: Bartosis. k, G. D.: Botteher II.: Seytried. C. A.: Sundell, S. J. Ahed. Chem. 1999. 42. 2235. (c) Cohen, V. I.: Jin, B.: Cohen, F.. I.: 7eeberg. B. R. J. Heteroctcic (Hem, 1998. 35.675. (d) Liao. Y: DeBoer. P: Meier. E.: Wikstrom. H. J. Wed. Chem. 1997. 40. 4146. (e) Corles. E. C.: Islas. 1. M.: Garcia. M. M.: Romero. M. O. Z. J. Heterocyclic Chem. 1996, 33, 1723. (f) 7hang. J..-lı:: Meicr, W.: Wats. Г..:

Costello. I. D.: Ma. '?: Ensinger. C. L.: Rodgers. ,I, M.: Jacobson. 1. C.: Rajagopalan. P. Tetrahedron Lett. 1995. 36. 8387.
3. lieize. L. f:: Brand. S.: Pleilier. l.: Antel. J.: Hamms. K.: Sheldrick. G. M. J. Am. Chom. Soc. 1987. 109, 921.
4. Khan, M. I .: Bano. Q.: Nizamuddin J. Agric. Fook Chem. 1995. $+3.2719$
5. Racker. R.: Doring. K.: Reiser. O. J. Ofg. Chem. 2000. 65. 6932.
6. A typical procedure for the synthesis ol 3a. 4a and 5a: A stirred solution of 1 a (496 mg .2 .0 mmol). phemylenediamine (2 a .432 $\mathrm{mg}, 4.0 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(552 \mathrm{mg} .4 .0 \mathrm{mmol})$ in acetonitrile (10 mI .) was heated to retlux for 14 h . Atter usual workup and column chromatographic separation (hevane ether. $3: 1$) allylic substitution products $3 \mathrm{a}-\mathrm{F}$. ($304 \mathrm{mg} .51^{\circ}{ }_{0}$) and 3a- 7 . ($102 \mathrm{mg} .17^{\circ}{ }^{\circ}$) was obtained. P'ure $3 \mathrm{a}-5(296 \mathrm{mg} .1 .0 \mathrm{mmol})$ in acetic aicd (3 mL) was heated to $60-70^{\circ} \mathrm{C}$ duning 18 h . Aller ustal workup and column chromatographic separation (hexane ether $3: 1-1: 2$) ta (91 mg . $\left.36^{\circ} \mathrm{o}\right)$ and $5 \mathrm{a}\left(110 \mathrm{mg} .34^{\circ} \mathrm{o}\right.$) were isolated. $3 \mathrm{a}-E$: oil: IR (KBr) .340.3, 3.34.3. $3246.1701 \mathrm{~cm}^{\text {I. }}{ }^{\mathrm{l}} \mathrm{II}$ NMR (CDCl_{3}) $\delta 1.34$ (t. $j-7.1$ $\mathrm{Hz} .3 \mathrm{H}) .3 .50$ (br s. 3 H). 4.10 (s. 2H). 4.29 (¢. $J-7.1 \mathrm{~Hz} .2 \mathrm{H})$. $6.55-6.78$ (m. 4 H$) \cdot 7.33-7.46$ (m. 5H). 7.91 (s. IH). ${ }^{1.7} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.27 .41 .38 .61 .10 .112 .95 .116 .19$. 119.36. 120.23. 128.64. 129.09. 129.50, 129.73, 134.82, 135.25. 136.97. 142.56. 167.78. 3a-Z: oil: IR (KBr) 3404, 3342, 3246. $1711 \mathrm{~cm}^{\mathrm{L}}:{ }^{1} \mathrm{H}$ NMR (CDCl $)^{\text {) }} \delta 1.11(\mathrm{t} . j-7.2 \mathrm{H} 7 . .3 \mathrm{II}), 3.50(\mathrm{br} \mathrm{s} 3 \mathrm{II})$..4 .10 (s. $2 \mathrm{H}) .4 .15(\mathrm{q} . J-7.2 \mathrm{~Hz} .2 \mathrm{H}) .6 .70-6.82(\mathrm{~m} .4 \mathrm{H}) .6 .89(\mathrm{~s} .1 \mathrm{H})$. 7.24-7.30 (m. 5 H$):{ }^{1.3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 13.74. 48.47. 60.82. 113.24. 116.64. 119.48. 120.56. 127.99. 128.03. 128.32. 131.74. 134.77. 1.34.82. 1.35.61, 136.7.3, 168.76. 4a: vellow solid, mp 155$157^{\circ} \mathrm{C}:$ IR (KBr) $3403,3.354 .3188,3058,1656.1625,1.38+\mathrm{cm}{ }^{\prime}$: ${ }^{1} \mathrm{II}$ NMR (CDCl_{3}) $\delta 4.09$ (br s. 1HI. NH). 4.1 .3 (s. 2 HI). 6.7.3-7.02 (m. 4 H). $7.32-7.43(\mathrm{~m} .5 \mathrm{H}) .7 .85(\mathrm{~s} .1 \mathrm{H}) .8 .76$ (brs. $1 \mathrm{H} . \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 43.34$. 118.00. 119.79. 120.25. 123.05. 126.65. 127.45 (2C by ${ }^{1} \mathrm{H}^{12}{ }^{12} \mathrm{C}$ hetero-COSY). 128.46. 130.97. 134.32. 137.03. 1.38.3i. 168.62: Mass (70 cV) mz (rel intensity) 119 (99). $1.34(20), 173(30), 221$ (34). $250\left(\mathrm{M}^{\prime}, 100\right)$. 5a: oil: IR (KBr) $1710 \mathrm{~cm}^{\mathrm{L}}{ }^{\mathrm{J}}{ }^{\mathrm{I}} \mathrm{I}$ I NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{t} . j-7.2 \mathrm{HI} . .3 \mathrm{IJ}) .2 .54(\mathrm{~s}$, $3 \mathrm{H}) .4 .06(\mathrm{q} . J-7.2 \mathrm{~Hz} .2 \mathrm{H}) .5 .20(\mathrm{~s} .2 \mathrm{H}) .7 .02-7.64(\mathrm{~m} .9 \mathrm{H})$. 8.01 (s. 1H): ${ }^{12} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 13.89. 14.21. 40.43. 61.24. 109.98. 118.78. 121.54. 121.73. 127.89. 128.91. 129.17. 129.39. $134.19 .135 .09,142.45,142.83,152.30,166.08$.

