DOI QR코드

DOI QR Code

Synthesis and Characterization of Tetrathiafulvalene (TTF) and 7,7,8,8-Tetracyanoquinodimethane (TCNQ) Compounds with PdX2(X=CI, NO3and Hexafluoroacetylacetonate)


Abstract

Tetrathiafulvalene(TTF) reacts with $PdCl_2,Pd(NO_3)_2$ and $Pd(hfacac)_2$(hexafluoroacetylacetonate) in ethanol to give $(TTF)_{1.5}PdCl_2$ (1a), $(TTF)_3Pd(NO_3)_2$ (1b) and $(TTF)_4Pd(hfacas)_2$ nd (1c), respectively. $PdCl(TCNQ)_{2.5}{\cdot}CH_3OH(2a)$was obtained from the reaction of $PdCl_2$ with LiTCNQ in methanol via the partial replacement of $Cl^-$ in $PdCl_2$ by $TCNQ^-$anion, whereas the total substitution of the labile $NO_3^-$ in $Pd(NO_3)_2$ yielded pd(TCNQ)·$CH_3OH$ (2b). $Pd(hfacac)_2(TCNQ)_2\cdot3CH_3OH$ (2c) was obtained from $Pd(hfacac)_2$ and LiTCNQ in methanol. The prepared compounds were characterized by spectroscopic (IR, UV, XPS) methods and magnetic (EPR, magnetic susceptibility) studies. The powdered electrical conductivities (${\sigma}_{rt}$) of the prepared compounds at room temperature were about~$10^{-7}S{\cdot}cm^{-1}$. The effective magnetic moments were lass than the spin-only value of one unpaired electron and no EPR signals from Pd metal ions were observed in any of the compounds, indicating that the Pd ions were diamagnetic and the magnetic moments arose from$(TTF)_n$ or $(TCNQ)_n$ moieties. The experimental evidences revealed that the charge transfer had occurred form $(TTF)_n$ moiety to the central Pd metal ion in 1a, 1b and 1c. Thus the TTF donors were ions in 2a and 2b were diamagnetic Pd(II) oxidation state. In contrast, the Pd metal ion was oxidized to Pd(IV) state in 2c as a result of an addition of $TCNQ^-$anion to $Pd(hfacac)_2$ in methanol. The oxidation states of the Pd metal ions were confirmed using the x-ray photoelectron spectroscopy.

Keywords

References

  1. Hatfield, W. E. Molecular Metals, NATO Conference Series; Plenum Press: New York, 1979.
  2. Kaim, W.; Moscherosch, M. Coord. Chem. Rev. 1994, 129, 157. https://doi.org/10.1016/0010-8545(94)85020-8
  3. Kim, Y. I.; Hatfield, W. E. Inorg. Chim. Acta 1991, 188, 15. https://doi.org/10.1016/S0020-1693(00)80911-1
  4. Kim, Y. I.; Hatfield, W. E. Inorg. Chim. Acta 1991, 189, 237. https://doi.org/10.1016/S0020-1693(00)80195-4
  5. Kim, Y. I.; Hatfield, W. E. Inorg. Chim. Acta 1993, 204, 261. https://doi.org/10.1016/S0020-1693(00)82935-7
  6. Kim, Y. I.; Choi, S. N.; Jung, W. S. Bull. Korean Chem. Soc. 1994, 15, 465.
  7. Kim, M. K.; Kim, Y. I.; Moon, S. B.; Choi, S. N. Bull. Korean Chem. Soc. 1996, 17, 1167.
  8. Park, E. J.; Lee, H. W.; Kim, Y. I. Bull. Korean Chem. Soc. 1997, 18, 1308.
  9. Jeong, C. K.; Kim, Y. I. Bull. Korean Chem. Soc. 1999, 20, 1509.
  10. Cornelissen, J. P.; van Dieman, J. H.; Groeneveld, L. R.; Hassnoot, J. G.; Spek, A. L.; Reedijk, J. Inorg. Chem. 1992, 31, 198. https://doi.org/10.1021/ic00028a014
  11. Torrance, J. B. Acc. Chem. Res. 1979, 3, 79.
  12. Wudl, F.; Smith, G. M.; Hufnagel, E. J. J. Chem. Soc., Chem. Commun. 1970, 1453.
  13. Becini, A.; Midollini, S.; Zanchini, C. Inorg. Chem. 1989, 28, 1963. https://doi.org/10.1021/ic00309a039
  14. Long, G.; Willet, R. D. Inorg. Chim. Acta 2001, 313, 1. https://doi.org/10.1016/S0020-1693(00)00260-7
  15. Kumar, G.; Blackburn, J. R.; Albridge, R. G.; Moddeman, W. E.; Jones, M. M. Inorg. Chem. 1972, 11, 296. https://doi.org/10.1021/ic50108a020
  16. Choudary, B. M.; Kumar, K. R.; Jamil, Z.; Thyagarjan, G. J. Chem. Soc., Chem. Commun. 1985, 931.
  17. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics, Inc.: 1995.
  18. Brun, M.; Berthet, A.; Bertolini, J. C. J. Elect. Spec. 1999, 104, 55. https://doi.org/10.1016/S0368-2048(98)00312-0
  19. Srivastava, S. Appl. Spectrosc. Rev. 1986, 22, 401. https://doi.org/10.1080/05704928608060441
  20. Ikemoto, I.; Yamada, M.; Sugano, T.; Kuroda, H. Bull. Chem. Soc. Jpn. 1980, 53, 1871. https://doi.org/10.1246/bcsj.53.1871
  21. Bozio, R.; Zanon, I.; Girlando, A.; Percile, C. J. Chem. Phy. 1979, 71, 2282. https://doi.org/10.1063/1.438564
  22. Seidle, A. R.; Candela, T. F.; Finnegan, T. F.; Van Duyne, R. P.; Cape, T.; Kokoszka, G. F.; Woyciejes, P. M.; Hashmall, J. A. Inorg. Chem. 1981, 20, 2635. https://doi.org/10.1021/ic50222a049
  23. Bozio, R.; Girlando, A.; Pecile, C. J. Chem. Soc. Faraday Trans. II 1975, 71, 1237. https://doi.org/10.1039/f29757101237
  24. Torrance, J. B.; Scott, B. A.; Welber, B.; Kaufman, F. B.; Seiden, P. E. Phys. Rev. 1979, B19, 730.
  25. Ballster, L.; Gutierrez, A.; Perpinan, M. F.; Azcondo, M. T. Coord. Chem. Rev. 1999, 192, 447. https://doi.org/10.1016/S0010-8545(99)00098-3
  26. Schiavo, S. L.; Tresoldi, G.; Mezzasalma, A. M. Inorg. Chim. Acta 1997, 254, 251. https://doi.org/10.1016/S0020-1693(96)05164-X

Cited by

  1. Pd-complex driven formation of single-chain nanoparticles vol.6, pp.24, 2015, https://doi.org/10.1039/C5PY00389J
  2. CuPc: Effects of its Doping and a Study of Its Organic-Semiconducting Properties for Application in Flexible Devices vol.12, pp.3, 2019, https://doi.org/10.3390/ma12030434
  3. Photoinduced Charge-Transfer Association of Tetracyanoquinodimethane with Aminobiphenyls vol.29, pp.5, 2002, https://doi.org/10.5012/bkcs.2008.29.5.948
  4. Simultaneous Arrangement of up to Three Different Molecules on the Pore Surface of a Metal–Macrocycle Framework: Cooperation and Competition vol.126, pp.32, 2002, https://doi.org/10.1002/ange.201404179
  5. Simultaneous Arrangement of up to Three Different Molecules on the Pore Surface of a Metal–Macrocycle Framework: Cooperation and Competition vol.53, pp.32, 2014, https://doi.org/10.1002/anie.201404179
  6. Bis(vinylenedithio)tetrathiafulvalene analogues of BEDT-TTF vol.11, pp.None, 2002, https://doi.org/10.3762/bjoc.11.46
  7. Effect of Organic Dopants in Dimetallophthalocyanine Thin Films: Application to Optoelectronic Devices vol.9, pp.4, 2002, https://doi.org/10.4236/ampc.2019.94007
  8. Comparative Study of Conduction Mechanisms in Disodium Phthalocyanine-Based Organic Diodes for Flexible Electronics vol.25, pp.16, 2002, https://doi.org/10.3390/molecules25163687
  9. A Comparative Study of the Semiconductor Behavior of Organic Thin Films: TCNQ-Doped Cobalt Phthalocyanine and Cobalt Octaethylporphyrin vol.25, pp.24, 2002, https://doi.org/10.3390/molecules25245800