Studies on the Total Synthesis of Amphidinolide O. A Stereoselective Synthesis of C12-C17 Fragment

Jin-Hyun Pang and Duck-Hyung Lee*
Department of (hemistry, Sogang linversity, Whinsoo-dong I, Mapo-kt, Seoul I21-742, Korea Received.Apill 1, 2002

Key words: Amphidinolide O, Cytotoxic macrolide, Stereoselective synthesis, Diastereoselective anti-aldol reaction

The amphidinolides are a series of cytotoxic macrolides isolated from the marine dinoflagellate Amphidinium sp.. which is a symbiotic with Okinawan marine flatworm Atmphiscolops sp. Amphidinolide O (1) exlibited in vitro cytotoxicity against L1210 and human epidermoid carcinoma KB cells (ICsin: 1.7 and $3.6 \mu \mathrm{~g} / \mathrm{mL}$. respectively). ${ }^{1}$ Several synthetic strategies for amphidinolide $\mathrm{A},{ }^{2} \mathrm{~B},{ }^{3} \mathrm{C} \cdot{ }^{1} \mathrm{G},{ }^{5}$ H^{5} and L^{56} have been reported to date and the total synthesis of three amphidinolides, J. ${ }^{*} \mathrm{~K},{ }^{*}$ and P^{9} was recently completed by Willians group. Herein. we describe the stereoselective synthesis of the $\mathrm{Cl} 2-\mathrm{Cl} 7$ fragment 3 of amphidinolide O (1) using a titanium-mediated diastereoselective anti-aldol reaction as a key step.
Retrosynthetically. the amphidinolide O (1) can be bisected into two fragments: the $\mathrm{Cl}-\mathrm{Cll}$ fragment 2 bearing the epoxide and the hemiketal moieties and C12-Cl7 vinyl iodide fragment 3 (Scheme 1).
The synthesis of vinyl iodide fragment 3 started from chiral propionate ester 4 (Scheme 2). The ($1 S, 2 R$)-cis-1-($p-$ methyl)benzenesulfonamido-2-indanyl ester 4 was prepared in 2 steps from commercially available optically active ($1 S 2 R$)-cis-aminoindan-2-ol. ${ }^{10}$ The titanium enolate of 4 was generated by the following sequence of reactions. i.e.. treatment of 4 with TiCl_{4} (1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}-25$ ${ }^{\circ} \mathrm{C}$ for 15 min . addition of A -ethyldiisopropy lamine (+.0 equiv.) at $25^{\circ} \mathrm{C}$. and finally stirring of the resulting dark brown solution for 2 lr .

The titanium enolate of 4 was then treated with 3-trimethylsilyl-2-propyn-1-al (5) (2.0 equiv.) ${ }^{11}$ which was already precomplexed with TiCl_{4} (2.4 equiv.) at $-78^{\circ} \mathrm{C}$, to provide the anti-aldol product 6 as a major product in 55% isolated yield. ${ }^{\text {1/ }}$ TMS group of anti-aldol ester 6 was remov-

Scheme 1. Retrosynthetic Aulalsis of Amplidinolide $O(1)$.
"Comesponding author L-mail: dhlee ôces.sogang.ac.kr
ed with tetra-n-butylanmonium fluoride (1.5 equiv.. 1.0 M in THF) in THF. ${ }^{12}$ The chiral auxiliary ester 7 was directly esterified with a solution of methyl magnesium chloride (6.0 equiv.. 3.0 M in THF) in methanol. ${ }^{13}$ Hydrostannylation of acety lene 8 with tributyltin hydride (1.5 equiv.) and AIBN (cat.) followed by metal-halogen exchange with iodime (1.2 equiv.) in diethyl ether yielded the desired (E)-vinyl iodide 10 in 54% yield over 2 steps. ${ }^{1-1}$

The tertiary alcohol $\mathbf{1 2}$ was prepared from the iodide to 10 via a two-step sequence: PMB-protection ${ }^{15}$ of secondary alcohol 10 with 4 -methoxy benzyl trichloroacetimidate (1.0 equiv.) and p-tolnenesulfonic acid (cat.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / c$-hevane and then the addition of methyl magnesium chloride (3.0 equiv.. 3.0 M in THF) in THF. Finally. dehydration with methanesulfonyl chloride (5.0 equiv.) and triethylamine (10.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ p produced the target fragment 3 in 80% yield. ${ }^{17}$

Scheme 2. Reagents and reaction conditions: (a) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ()-
 55% : (b) TBAl^{-}THIF- rt, $2 \mathrm{hr} .8\left(\% \%\right.$. (c) $\mathrm{CH}_{3} \mathrm{MgCl}, \mathrm{MeOH} . \mathrm{rt}, 12$ $\mathrm{hr}, 78 \%$ (d$) n-\mathrm{Bu} \mathrm{u}_{3} \mathrm{SnLI}$. AIBN, $85^{\circ} \mathrm{C}, 2 \mathrm{hr} .68 \%$ (e) I_{2}. Et O , rt. 10 mint, 80%; (t) PMB-TC $\wedge, \mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{c}-$-Hexane, $\mathrm{rt}, 12 \mathrm{hr}, 60 \%$: (g) $\mathrm{CH}_{3} \mathrm{Mg} \mathrm{Cl}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{hr}, 70 \%$; (h) $\mathrm{MsCl}, \mathrm{Fit}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}$: $30 \mathrm{~min} 80 \%$.

Scheme 3. Determination of relative stereochemistry of aldol product 6. (a) $\mathrm{I} . \mathrm{AlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{hr}, 60 \%$ (b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2}$ PYTS, $\mathrm{ClH}_{2} \mathrm{Cl}_{2}, \mathrm{rl}, 12 \mathrm{hr}, 65 \%$.

In order to establish the relative stereochemistry. the antialdol product 6 was converted to the acetonide 13 by reduction with lithium aluminum hydride (2.5 equiv.) in THF at $0^{\circ} \mathrm{C}$ followed by exposure of resulting diol to 2.2dimethoxypropane (10.0 equiv.) in the presence of a catalytic amount of pyridinium p-toluenesulfonate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 3). ${ }^{10 / 4}$ The relative stereochemistry at Cl 4 -C15 was confirmed umambiguously by ${ }^{1} \mathrm{H}$ NOE difference spectroscopy (1.83% endrancement of the 20 -Me signal upon irradiation of H_{n}) and a coupling constant $/ /_{\mathrm{ab}}$ of 10.5 Hz . which suggests the anti configurational relationship in 6 . ${ }^{1 \mathrm{P}_{\mathrm{t}} 16}$

In summary, we have achieved the stereoselective synthesis of $\mathrm{C} 12-\mathrm{Cl} 7$ fragment $\mathbf{3}$ from the chiral propionate ester 4 wia 8 step sequences in 6.3% overall yield

Experimental Section

3-Trimethylsilyl-2-propyn-1-al (5). Solid pyridinium chlorochromate (1.85 g .8 .56 mmol .1 .1 equiv.) was added to a stirring solution of 3-trimethylsilyl-2-propy in-l-ol $(1.0 \mathrm{~g}$. 7.79 mmol .1 .0 equiv.) in dichloromethane (15 mL). Stirring continued in a sealed flask for 6 hr at room temperature. The solution was filtered through a pad of Celite, and the remaining black precipitant in the flask was rinsed with diethyl ether (50 mL) followed by filtration. The filtrates were combined and dried over anhydrous MgSO_{4}, filtered and concentrated to give aldehy de 5 as a brown oil in 50% yield (0.49 g). The crude aldehyde 5 was used without further purification. TLC $R_{f} 0.60(10 \% \mathrm{EtOAc}$ in hexane): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 0.22(\mathrm{~s}, 9 \mathrm{H}) .9 .20(\mathrm{~s}, 1 \mathrm{H})$.
(1S,2R)-N-[2,3-Dihydro-2-((2S,3S)-3-hydroxy-2-methyl-5-trimethylsilyl-1-0xo-pent-4-ynoxy)-1 H -inden-1-yl]-4methylbenzenesulfonamide (6). To a solution of propionate ester 4 (1.0 g .2 .78 mmol .1 .0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1+\mathrm{mL})$ was added IM solution of $\mathrm{TiCl}_{1}(3.33 \mathrm{~mL}$, 3.33 mmol .1 .2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise wia syringe under N_{2} at $0^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature and stirred for an additional 15 min. A -ethyldiisopropyl- amine ($1.94 \mathrm{~mL}, 11.22 \mathrm{mmol}$, 4.0 equiv.) was added to this solution dropwise at $25^{\circ} \mathrm{C}$ by syringe. The color of the solution became brown after stirring for an additional 1 hr at $25^{\circ} \mathrm{C}$. In a separate flask. to a stirred solution of aldehyde 5 (706 mg .5 .56 mmol .2 .0 equis.) in $\mathrm{CH}_{2} \mathrm{Cl}_{-}(28 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. was added a 1 M solution of TiCl_{1} ($6.67 \mathrm{~mL} .6 .67 \mathrm{mmol}, 2 .+$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - The resulting reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$
for 5 min , the above enolate solution was added to the aldehyde 5 solution dropwise via cannula over a period of 5 min. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 hr and then it was quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anlyydrous MgSO_{4}. filtered and concentrated under reduced pressure to afford a residue which was purified by silica gel chromatography ($20 \% \mathrm{EtOAc}$ in hexane) to yield the title aldol product 6 ($743 \mathrm{mg} .55 \%$) as a white solid. TLC $R_{f} 0.50(33 \%$ EtOAc in hexane); m.p. $53-55^{\circ} \mathrm{C}:[\alpha]_{0}^{\mathrm{J}^{-}}=-22.3$ (c 2.77 . CHCl_{3}): IR (KBr pellet) 3479, 3283. 3049. 2958, 2921, 2224. 1725. 1336. $1124 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .500 \mathrm{MHz}\right) \delta$ $7.81(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}) .7 .32-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.02(\mathrm{~d} .1 \mathrm{H} . J=$ $10 \mathrm{~Hz}), 5.34(\mathrm{t}, 1 \mathrm{H} . J=5 \mathrm{~Hz}) .4 .92+4.89(\mathrm{~m} .1 \mathrm{H}) .4 .35-4.32$ (m. 1H). 3.10 (dd. $1 \mathrm{H} . J=5 \& \mathrm{lHHz}$) 2.93 (d. $1 \mathrm{H} . ~ J=6$ Hz). 2.89 (d. $1 \mathrm{H}, J=17 \mathrm{~Hz}$). $2.69-2.63$ (m. 1 H). $2.4+(\mathrm{s}$. $3 \mathrm{H}) .1 .19(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 0.14(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 172.3,1+3.6 .139 .8 .138 .4 .137 .8,129.8,128.5$ 127.4. 127.1, 124.4, 103.3. 91.8. 74.9. 64.6. 59.7, 47.0. 37.2 21.5. 13.9. -0.3: $\mathrm{GC} / \mathrm{MS}(\mathrm{m} / \mathrm{z})$ caled. for $\mathrm{C}_{2} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SSi}$ $\left(\mathrm{M}^{-}\right)+85.17$, found 484.30; Anal. Calcd. for $\mathrm{C}_{2}, \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SSi}$ C. 61.83: H, 6.43: N. 2.88. Found: C. 61.88: H. 6.47: N, 2.77.
($1 S, 2 R$)-N-[2,3-Dihydro-2-((2S,3S)-3-hydroxy-2-methyl-1-oxo-pent-4-ynoxy)-1 H -inden-1-yl]-4-methylbenzenesulfonamide (7). To a $0^{\circ} \mathrm{C}$ solution of aldol product 6 (1.0 g. 2.05 nmol . 1.0 equiv.) in 10 mL THF was added a 1 M solution of tetra- n-butylammonium fluoride ($3.07 \mathrm{~mL}, 3.07$ mmol, 1.5 equiv.) in THF. The cooling bath was removed and the solution was stirred at room temp for 2 hr and then it was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine. dried over anhydrous MgSO_{4}. filtered and the solvent removed in wacto. Column chromatography ($25 \% \mathrm{EtOAc}$ in hexane) gave 681 mg (80%) of the title compound 7 as a white solid. TLC $R_{f} 0.50(50 \% \mathrm{EtOAc}$ in hexane): m.p. $1+0-142^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{2^{-}}=-13.9\left(c 0 .+2 . \mathrm{CHCl}_{3}\right)$: IR (KBr pellet) $3511,30+5.297+$. 2361. 1718, 1373, $1164 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ~} \delta 7.82$ (d. $2 \mathrm{H} . j=8 \mathrm{~Hz}$). $7.32-$ $7.16(\mathrm{~m} .6 \mathrm{H}) .5 .91(\mathrm{~d} .1 \mathrm{H} . J=9.5 \mathrm{~Hz}) .5 .3+(\mathrm{ddd} .1 \mathrm{H} . J=$ $1.5,5 \& 5 \mathrm{~Hz}), 4.93-4.90(\mathrm{~mm}, 1 \mathrm{H}), 4.38-4.35(\mathrm{~m} .1 \mathrm{H}) .3 .12$ (dd. $1 \mathrm{H} . J=5 \& 17 \mathrm{~Hz}) .3 .01(\mathrm{~d} .1 \mathrm{H} . J=6 \mathrm{~Hz}) .2 .92(\mathrm{~d} .1 \mathrm{H}$. $J=17 \mathrm{~Hz}) .2 .73-2.67(\mathrm{~m} .1 \mathrm{H}) .2 .48(\mathrm{~d} .1 \mathrm{H} . J=2.5 \mathrm{~Hz}) .2 .45$ (s. 3 H). 1.76 (br s. IH). 1.21 (d. $3 \mathrm{H} . J=7 \mathrm{~Hz}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .125 \mathrm{MHz}\right) \delta 172.2$. 143.7. 139.7. 138.4. 137.7. 129.8. 128.5. 127.t. 127.1. 124.9. 124.4. 82.0. 75.2.74.7. 63.9. 59.7. 46.8. 37.3. 21.5. 13.8: GC/MS (m/z) calcd. for $\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right)+13.13$. found +11.10: Anal. Caled for $\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C} .63 .90$; H. 5.6 I : N. 3.39. Found: C. 63.95 : H. 5.53; N. 3.35.

Methyl (2S,3S)-3-hydroxy-2-methyl-4-pentynoate (8). To a $0{ }^{\circ} \mathrm{C}$ solution of $400 \mathrm{mg}(0.96 \mathrm{mmol}$. 1.0 equiv.) of aldol product 7 in 4 mL of anhydrous methanol was added via cannula a suspension formed by the addition of 1.93 mL (5.76 mmol .6 .0 equiv.. 3.0 M in THF) of methyl
magnesium clloride to +mL of anhydrous methanol. After the reaction mixture was stirred at room temperature for 12 hr. it was quenched by the addition of 4 mL of pH 7 phosphate buffer. Volatiles were removed in vacuo. The residue was dissolved in 1.0 M aqueous hydrochloric acid. extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. dried over anhydrous MgSO_{4}. filtered and concentrated in vacuo. Purification by flash chromatography ($25 \% \mathrm{EtOAc}$ in hexane) afforded 107 mg (78%) of the title compound 8 as a colorless oil. TLC $R_{f} 0.35$ $\left(33 \% \mathrm{EtOAc}\right.$ in hexane): $[\alpha]_{\mathrm{D}}^{17}=+21.0\left(c 0.65, \mathrm{CHCl}_{2}\right) ; \mathrm{IR}$ (neat) $3456,2985,2117,1727.1459 .1268 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3,}, 500 \mathrm{MHz}\right) \delta+.53$ (ddd. $1 \mathrm{H}, ~ J=2,7 \& 7 \mathrm{~Hz}$), 3.74 (s. $3 \mathrm{H}) .2 .9+(\mathrm{d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.79-2.73(\mathrm{~m} . \mathrm{HH}) .2 .49(\mathrm{~d}$. $1 \mathrm{H}, J=2 \mathrm{~Hz}), 1.31(\mathrm{~d}, 3 \mathrm{H} . J=7 \mathrm{~Hz}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .125\right.$ $\mathrm{MHz}) \delta 174.93$. 82.41. 74.1, 64.1. 52.0. +5.9. 13.8: GC/MS $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{-}^{-} \mathrm{H}_{\mathrm{l}} \mathrm{O}_{3}\left(\mathrm{M}^{-}\right) 1+2.06$. found $1+2.97$.

Methyl ($\mathbf{2 S}, \mathbf{3 S}$)-3-hydroxy-2-methyl-5-tributylstannanyl($4 E$)-pentenoate (9). Acety lene 8 ($200 \mathrm{mg} .1 .+1$ numol, 1.0 equiv.). $n-\mathrm{Bu}_{3} \mathrm{SnH}(0.57 \mathrm{~mL}, 2.11 \mathrm{mmol} .1 .5$ equiv.) and AlBN ($12 \mathrm{mg} .0 .07 \mathrm{mmol}, 0.05$ equiv.) were stirred under nitrogen at $85^{\circ} \mathrm{C}$ for 2 hr . The reaction mixture was cooled to room temperature. Purification by column chromatography ($10 \% \mathrm{EtOAc}$ in hexane) afforded $+14 \mathrm{mg}(68 \%)$ of the title compound 9 as a colorless oil. TLC $R_{f} 0.23(10 \%$ EtOAc in hexane): $[\alpha]_{\mathrm{L}}^{1-}=+6.5\left(c 0.67, \mathrm{CHCl}_{3}\right)$: IR (neat) 3494 . 2956. 2852. 1726. 1459. $1375 \mathrm{cml}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} .500\right.$ $\mathrm{MHz}) \delta 6.26(\mathrm{~d} .1 \mathrm{H} . J=19 \mathrm{~Hz}), 5.98(\mathrm{dd} .1 \mathrm{H} . J=6 \& 19$ $\mathrm{Hz}) .4 .17-4.13(\mathrm{~m} .1 \mathrm{H}), 3.70(\mathrm{~s} .1 \mathrm{H}), 1.52-1.46(\mathrm{ml} .6 \mathrm{H})$, $1.33-1.26$ (m. 6H). 1.18 (d. $3 \mathrm{H} . J=6 \mathrm{~Hz}$). 0.91-0.87 (m. $15 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.9,147.5,131.1$. 77.2. 51.7. 45.1. 29.1, 29.0. 28.9. 27.4. 27.2, 27.0, 14.1, 13.7. 10.9. 10.8.9.5.8.2.8.1: GC/MS (m/z) calcd. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Sn}$ $\left(\mathrm{M}^{+}\right)+32.18$, found 435.25 : Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Sn}: \mathrm{C}$. 52.68: H. 8.84 . Found: C. 52.56 ; H. 8.85

Methyl ($2 S, 3 S$)-5-iodo-3-hydroxy-2-methyl-(4E)-pentenoate (10). A solution of iodine (70 mg .0 .28 mmol .1 .2 equiv.) in dry ether (2 mL) was added dropwise via cannula over a period of 1 min to a cold $\left(0^{\circ} \mathrm{C}\right)$. stirred solution of vinyl stannane 9 (100 mg .0 .23 mmol .1 .0 equiv.) in the same solvent (2 mL). The reaction mixture was stirred an additional 10 min at room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{3}$ solution. The organic phase was washed with brine, dried over anhydrous $\mathrm{MgSO}_{\mathrm{H}}$, filtered and concentrated in vacto. Purification by colum chromatograply ($20 \% \mathrm{EtOAc}$ in hexane) afforded $414 \mathrm{mg}(68 \%)$ of the title compound 10 as a white solid. TLC $R_{f} 0.27$ (20% EtOAc in hexane) : m.p. $36-38{ }^{\circ} \mathrm{C}$: $[\alpha]_{\Gamma}^{2^{2}}=+7.7$ (c 0.47 . CHCl_{3}): IR (KBr pellet) 3274. 2361. 1722, 1458, 133+. 1190. $1160 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .500 \mathrm{MHz}\right) \delta 6.58(\mathrm{dd}$. $1 \mathrm{H} . J=6.5 \& \mathrm{l}+.5 \mathrm{~Hz}) .6 .47$ (d. $1 \mathrm{H} . J=1+.5 \mathrm{~Hz}) .+.20-+.16$ (m. 1H). 3.72 (s. 3 H). 2.85 (d. $1 \mathrm{H}, J=6 \mathrm{~Hz}) .2 .61-2.56(\mathrm{~m}$. 1H). $1.20($ d. $1 \mathrm{H}, J=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .125 \mathrm{MHz}\right) \delta$ 175.4. 145.4, 79.3. 76.1, 52.0. 4.6. 13.9: GC/MS (min/z) calcd. for $\mathrm{C}-\mathrm{H}_{11} \mathrm{IO}_{3}\left(\mathrm{M}^{-}\right) 269.98$, found $237.71\left(-\mathrm{CH}_{3} \mathrm{OH}\right)$

Methyl (2S,3S)-5-iodo-3-p-methoxybenzyloxy-2-methyl-(4E)-pentenoate (11). To a stirred solution of the alcohol 10 (100 mg .0 .37 mmol .1 .0 equiv.) and p-toluenesulfonic acid
($+\mathrm{mg}, 0.019 \mathrm{mmol}$, 0.05 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / c-$ hexame (2 mL) at $0{ }^{\circ} \mathrm{C}$ was added + -methoxybenzyl trichloroacetimidate ($104 \mathrm{mg} .0 .37 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) and then stirning was continued at room temperature for 12 hr . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ at room temperature. The reaction mixture were filtered through a pad of Celite. evaporated in vacuo. Column chromatography (10% EtOAc in hexane) gave $86 \mathrm{mg}(60 \%)$ of the title compound 11 as a colorless oil. TLC $R_{f}(0.29$ ($10 \% \mathrm{EtOAc}$ in hexane): $\lfloor\alpha\rfloor_{D}^{27}=+69.1\left(c 0.81, \mathrm{CHCl}_{3}\right)$; IR (neat) 2949. 2838.1737 , 1610. $1513,1458.1249 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .500 \mathrm{MHz}\right) \delta$ 7.19-7.17 (m, 2H), 6.88-6.86 (m, 2H), 6.42-6.40 (m. 2 H), $+.52(\mathrm{~d} .1 \mathrm{H} . J=11.5 \mathrm{~Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 3.95-$ 3.91 (m. 2H). 3.81 (s. 3 H). 3.68 (s. 3 H). 2.68-2.62 (m. 1 H). $1.09(\mathrm{~d}, 3 \mathrm{H}, \delta=7 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 174.6. 159.2. 158.1. 143.9. 129.7. 129.3, 113.8. 83.0.80.4 70.7. 55.3. 51.8. 44.3. 13.3: GC/MS (m/z) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19}\left[\mathrm{O}_{4}\left(\mathrm{M}^{-}\right) 390.03\right.$, found $262.95(-1)$.
(3S,4S)-2,3-Dimethyl-2-hydroxy-6-iodo-4-p-methoxy-benzyloxy-($5 E$)-heptenoate (12). To a solution of ester 11 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv.) in THF (2 mL) at $0{ }^{4} \mathrm{C}$ was added methylmagnesium chloride (0.25 mL .3 .0 equiv.. 3.0 M in THF) and stirring was continued for 1 hr . The reaction mixture was quenched with saturated ammonium chloride. The mixture was extracted with ethyl acetate. The combined organic extracts were dried over MgSO_{4}. filtered and concentrated in vacuo. The residue was purified by column chromatography ($25 \% \mathrm{EtOAc}$ in hexane) to provide the tertiary alcohol 12 (70 mg. 70\%) as a colorless oil. TLC R_{f} $0.45(33 \% \mathrm{EtOAc}$ in hexane $) ;[\alpha]_{\mathrm{D}}^{27}=+58.2\left(c 0.1, \mathrm{CHCl}_{3}\right)$: IR (neat) 3053. 2986, 1522, 1421, 1265. 909, $738 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .500 \mathrm{MHz}$) $\delta 7.2+-7.2 \mathrm{~L}(\mathrm{~m} .2 \mathrm{H}), 6.89-6.87(\mathrm{~m}$. $2 \mathrm{H}) .6 .47-6.33(\mathrm{~m}, 2 \mathrm{H}),+.56(\mathrm{~d} .1 \mathrm{H}, J=11 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}$. $j=11 \mathrm{~Hz}) .3 .80(\mathrm{~s}, 3 \mathrm{H}) .3 .75-3.72(\mathrm{~m} .1 \mathrm{H}) .1 .8+-1.78(\mathrm{~m}$. 1H). 1.58 (brs. 1 H). 1.15 (s. 3 H), 1.07 (s. 3 H$) .0 .78$ (d. $3 \mathrm{H} . ~ J$ $=8 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.5 .145 .6 .129 .9$. 129.7, 128.8, 113.9. 85.8. 80.1. 73.2, 70.4, 55.3. 46.5. 29.5. 23.5. 13.7: $\mathrm{GC} / \mathrm{MS}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{2}, \mathrm{IO}_{3}\left(\mathrm{M}^{+}\right) 390.07$. found 393.09: Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{2}: 1 \mathrm{O}_{3}: \mathrm{C} .49 .24: \mathrm{H} .5 .94$ Found: C, 49.20: H. 5.92.
(3S,4S)-2,3-Dimethyl-6-iodo-4-(p-methoxyhenzyloxy) hexa-1,5-diene (3). To a stirred solution of tertiary alcohol 12 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$. I. Oequiv.) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added methanesulfonyl chloride $(0.1 \mathrm{~mL} .1 .28 \mathrm{mmol} .5 .0$ equiv.) and then triethylamine (0.36 mL .2 .56 mmol .10 .0 equiv.) at $-10^{\circ} \mathrm{C}$ by syringe. The mixture was stirred at -10 ${ }^{\circ} \mathrm{C}$. The reaction progress was monitered by TLC. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$. extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, filtered and evaporated in vactuo. Purification by column chromatography (3.3% EtOAc in hexane) afforded $76 \mathrm{mg}(80 \%)$ of the title compound 3 as a white solid. TLC $R_{f} 0.31\left(3.3 \%\right.$ EtOAc in hexane): $[\alpha]_{17}^{17}=$ +47.1 ($c 0.08, \mathrm{CHCl}_{3}$): IR (neat) 2963, 2862, 1611. 1513. 1458. 1248. 1037. $1172 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{2} .500 \mathrm{MHz}\right) \delta$ $7.15-7.14$ (m. 2H), 6.80-6.78 (m. 2H), 6.38 (dd, $1 \mathrm{H}, J=8 \&$ $14.5 \mathrm{~Hz}) .6 .21(\mathrm{~d} .1 \mathrm{H} . J=1+.5 \mathrm{~Hz}) .4 .73-4.72(\mathrm{~m} .1 \mathrm{H}) .4 .68-$ $+.67(\mathrm{~m} .1 \mathrm{H}) .4 .46(\mathrm{~d} .1 \mathrm{H} . J=12 \mathrm{~Hz}) .4 .21(\mathrm{~d} 1 \mathrm{H}, J=11.5$

Hz). 3.73 (s, 3H). 3.58-3.55 (m. 1H). 2.3+2.28 (m. 1H), $1.56(\mathrm{~s} .3 \mathrm{H}), 0.89(\mathrm{~d} .3 \mathrm{H}, j=7 \mathrm{~Hz}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .125\right.$ $\mathrm{MHz}) \delta 159.1,146.6 .1+5.5 .130 .2,129.3,113.7$. 111.8 . 83.5. 78.5, 77.5. 70.2, 55.3. 45.0. 20.1. 15.4. 13.6. GC/MS $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{2}-1 \mathrm{O}_{2}\left(\mathrm{M}^{-}\right) 372.06$, found $24.98(-\mathrm{I})$.

Acknowledgment. This research was assisted financially by Korea Research Foundation Grant (2000-015-DP0260).

References

I. Ishibashi, M.: Takahashi. M.: Kobayashi, J. J. Org. (Them. 1995. 60, 6062-6066
2. (a) Iollingworth, G. J.: Pattenden. G. Tetrahedron Ieft. 1998. 39. 703-706. (b) Terrell. L. R.: Ward III. J. S.: Malečzka Ir. R. E. Tetrahedron Lett. 1999. 10. 3097-3100.
3. (a) Lee. D. H.: Lee. S. W. Tctrahedron Lett. 1997. 38. 7909-7910. (b) Eng. II. M.: Myles. D. C. Tetrahedron Ieff. 1999. 40. 2275 2278. (b) Eng. II. M.: Myles. D. C. Tefrohedron Iett. 1999. 10. 2279-2282. (c) Ishivama. II.: Takemura. T.: Tsuda. M.: Kobavashi. J. Tifrehtedrom 1999. 55. 4583-4594. (d) Cid. M. B.: P'allenden. G. Fetratedron Leff. 2000. f1. 7373-7378. (e) Lee. D. H.: Rho. M. D. Fetrahe tron Leth. 2000. 41. 2573-2576.
4. Ishyama. It.: Ishibashi, M.: Kobayashi. J. (hem. Phowm. Ruhl. 1996. 4 . 1819 - 1822.
5. (a) Chakraborty. T. K.: Suresh, V. R. Tetrahedron Lett. 1998. 39. 9109-9112. (b) Chakraborts, T. K.: Suresh, V. R. Tefrohedron Lett. 1998. 39, 7775-7778
6. Kobayashi. J.: Hatakevama. A.: Isuda. M. Ienahedron 1998. 54. 697-704.
7. Williams. D. R.: Kissel. W. S. J. Am. Chmm. Soc. 1998. 120. III98-III99.
8. Williams, D. R.: Mever, K. G. In Athstracts of Papers, $218^{\text {th }}$ National Meeting of the American Chemical Society. 1999: American Chemical Society: Washington. DC. 1999. p 578 ORGGN.
9. Williams. D. R.: Myers. B. J.: Mi. L. Org. Leff. 2000. 2. 945-948.
10. (a) Ghosh. ^. K.: Otishi, M. J. Im. (hem. Soc. 1996. /18. $2527-$ 2528. (b) Ghosh, A. K:- Fidanze, S.: Onishi, M.: Iussain. K. A Tetrahedron Lett. 1997. 38. 7171-7174. (c) Ghosh. A. K.: Fidanze. S. J. Org. Chem. 1998. 63.6146-6152.
11. Solladie. G.: Hamdouchi. C. Swhthesiy 1941.979-982
12. Mausais. A.: Hetru. C.: Lau. B. Terahedrom Letf. 1991. 32. 51715174
13. Fivans, D. A.: Weber, A. F.. J. Im. ('hem. Soc. 1986. 109. 67576761
14. Chen. S. L.: Schaub. R. E.: Grudzinskas. C. V. J. Org. Chem. 1978. 43. $3450-3454$.
15. (a) Wider. U. Swhthesis 1987. 568. (b) Keck. G. A.: Palani. A.: Mellardy, S. F. J. Org. (Them. 1994. 59, 3113.
16. Mukaiyama, T.: Iwasawa. N. (hem. Lett. 1984, 753-756.

