DOI QR코드

DOI QR Code

Synthesis and Photoisomerization Properties of Polynorbornenes with Azobenzene Chromophores


Abstract

We successfully synthesized the addition-type polynorbonenes (PNB) exhibiting photochromic properties and excellent thermal stability. Three norbornene-based monomers with different azobenzene moiety (R=NO2, H,OCH3) were synthesized by transesterification method. The corresponding PNB copolymers were synthesized by transition metal-catalyzed addition polymerization method, and characterized by GPC, UV-Vis spectroscopy, NMR, and thermal analysis. For comparison of the photochromic properties depending on the rigidity of polymer backbone, we prepared the polymethylmethacrylate (PMMA) copolymer with the corresponding azobenzene moiety. We investigated the photoisomerization behavior by means of optical muitichannel analyzer with Xe lamp as well as real-time UV-Vis spectroscopy with high-pressure mercury lamp. Among three PNB copolymers, a polymer with azobenzene (R=H) was the most adaptable for observation of photoisomerization behavior. It was found that the rate of photoisomerization and relaxation depended on the structure of azobenzene chromophore, rather than that of polymer backbone.

Keywords

References

  1. Rau, H. Photochemistry and Photophysics; Rabek, J. F., Ed.;CRC Press: Boca Raton, FL, 1990; Vol. II, Chapter 4.
  2. Kumar, G.; Neckers, D. Chem. Rev. 1989, 89, 1915. https://doi.org/10.1021/cr00098a012
  3. Naito, C.; Horie, K.; Mita, I. Polym. J. 1991, 23, 809. https://doi.org/10.1295/polymj.23.809
  4. Paik, C.; Morawetz, H. Macromolecules 1972, 5, 171. https://doi.org/10.1021/ma60026a015
  5. Tabak, D.; Morawetz, H. Macromolecules 1970, 3, 403. https://doi.org/10.1021/ma60016a006
  6. Einsbach, C. Machromole. Chem. 1978, 179, 2489. https://doi.org/10.1002/macp.1978.021791014
  7. Dubini-Paglia, E.; Beltrame, P. L.; Marcandalli, B.; Carniti, P.;Seves, A.; Vieini, L. J. Appl. Polym. Sci. 1986, 31, 1251. https://doi.org/10.1002/app.1986.070310510
  8. Kwolek, S. L.; Morgan, P. W.; Schaefgen, J. R. Encyclopedia ofPolymer Science and Engineering; John-Wiley: New York, 1985;Vol 9, p 1.
  9. Mohlmann, G. R.; Van der Vorst, C. P. J. M. Side Chain LiquidCrystal Polymers; Mcardle, C. B., Ed.; Plenum and Hall: Glasgon,1989; Chapter 12.
  10. Han, Y.; Kim, D.; Kim, Y. J. Polym. Sci., Part A: Polym. Chem.1992, 30, 1177. https://doi.org/10.1002/pola.1992.080300625
  11. Ikeda, T.; Horiuchi, S.; Karanjit, D. B.; Kurihara, S.; Tazuke, S.Macromolecules 1990, 23, 36. https://doi.org/10.1021/ma00203a008
  12. Ikeda, T.; Horiuchi, S.; Karanjit, D. B.; Kurihara, S.; Tazuke, S.Macromolecules 1990, 23, 42. https://doi.org/10.1021/ma00203a009
  13. Sasaki, T.; Ikeda, T.; Ichmura, K. Macromolecules 1992, 25,3807. https://doi.org/10.1021/ma00040a030
  14. Imurie, C. T.; Karasz, F. E.; Attard, G. S. Macromolecules 1992,25, 1278. https://doi.org/10.1021/ma00030a012
  15. Tenkovtsev, A. V.; Piraner, O. N.; Bilibin, A. Y. Makromol. Chem.1991, 192, 1275. https://doi.org/10.1002/macp.1991.021920605
  16. Iimura, K.; Koide, N.; Otha, R.; Takeda, M. Makromol. Chem.1981, 182, 2563. https://doi.org/10.1002/macp.1981.021821004
  17. Hill, J. R.; Pantelis, P.; Abbsi, F.; Hodge, P. J. Appl. Phys. 1988,64, 2749. https://doi.org/10.1063/1.341618
  18. Allcock, H. R.; Laredo, W. R.; Kellam III, E. C.; Morford, R. V.Macromolecules 2001, 34, 787. https://doi.org/10.1021/ma001166n
  19. Lamarre, L.; Sung, C. Macromolecules 1983, 16, 1729. https://doi.org/10.1021/ma00245a009
  20. Wiesner, U.; Antonietti, M.; Boeffel, C.; Spiess, H. Macromol.Chem. 1990, 191, 2133. https://doi.org/10.1002/macp.1990.021910916
  21. Kim, J. M.; Shin, H. Y.; Park, K. H.; Kim, T. H.; Ju, S. Y.; Han, D.K.; Ahn, K. D. Macromolecules 2001, 34, 4291. https://doi.org/10.1021/ma002061n
  22. Robello, D. R. J. of Polymer Science: Part A: Polymer Chemistry1990, 28, 1. https://doi.org/10.1002/pola.1990.080280101
  23. Brown, D.; Nathansohn, A.; Rochon, P. Macromolecules 1995,28, 6116. https://doi.org/10.1021/ma00122a019
  24. Chen, M.; Dalton, L. R.; Yu, L. P.; Shi, Y. Q. Macromolecules1992, 25, 4032. https://doi.org/10.1021/ma00041a027
  25. Ikeda, T.; Kurihara, S.; Karanjit, D. B.; Tazuke, S. Macromolecules1990, 23, 3938. https://doi.org/10.1021/ma00219a012
  26. Einsbach, C. Makromol. Chem., Rapid Commun. 1980, 1, 287. https://doi.org/10.1002/marc.1980.030010501
  27. Gordon, P. F.; Gregory, P. Organic Chemistry in Colour; Springer-Verlag: Berlin, Heidelberg, New York, 1982; Chapter 3.
  28. Goodall, B. L.; Risse, W.; Mathew, J. P. US Patent 5,705,503, 1998.

Cited by

  1. Characterization of the Spironaphthooxazine Doped Photochromic Glass: The Effect of Matrix Polarity and Pore Size vol.112, pp.4, 2008, https://doi.org/10.1021/jp073587d
  2. Proton Sensing Color Changing Organoiron and Organic Macromolecules vol.25, pp.3, 2015, https://doi.org/10.1007/s10904-015-0193-6
  3. Synthesis and characterization of azo-based methacrylate polymers with methoxy and nitro end groups for nonlinear optical applications vol.104, pp.6, 2007, https://doi.org/10.1002/app.24656
  4. Stable Colored and Fluorescent Patterns Derived from Photochromic Spiropyran and Photoacid Generator vol.491, pp.1, 2002, https://doi.org/10.1080/15421400802330515