DOI QR코드

DOI QR Code

Theoretical Evaluation of the Electrophilic Catalyses in Successive Enolization and Reketonization Reactions by Δ5-3-Ketosteroid Isomerase


Abstract

Based on ab initio calculations at the MP2(FULL)/6-31+G**//RHF/6-31G** level, we compare the energetic and mechanistic features of a model reaction for catalytic action of Δ?-3-ketosteroid isomerase (KSL,E.C.5.3,3.1) with those of a corresponding nonenzymatic reaction in aqueous solution. The results show that the two catalytic acid residues,Tyr14 and Asp99, can lower the free energy of activation by 8.6kcal/mol, which is in good agreement with the experimentally predicted~9 kcal/mol,contribution of electrophilic catalyses to the whole enzymatic rate enhancement. The dienolate intermediate formed by proton transfer from the substrate carbon acid to the catalytic base residue (Asp38) ins predicted to be stabilized by 12.0 kcal/mol in the enzymatic reaction, making its formation thermodynamically favorable. It has been argued that enzymes catalyzing the reactions of carbon acids should resolve the thermodynamic problem of stabilizing the enolate intermediate as well as the kinetic porblem of lowering the free energy of activation for porton abstraction. We find that KSI can successfully overcome the thermodynamic difficulty ingerent in the nonenzymatic reaction through the electrophilic catalyses of the two acid residues. Owing to the stabilization of dienolate intermediate, the reketonization step could influence the overall reaction rate more significantly in the KSI- catalyzed reaction than in the nonenzymatic reaction, further supporting the previous experimental findings. However, the electrophilic catalyses alone cannot account for the whole catalygic capability (12-13 kcal/mol), confiming the earlier experimental implications for the invement of additional catalytic components. The present computational study indicates clearly how catalytic residues of KSI resolve the fundamental problems associated with the entropic penalty for forming the rate-limiting transition state and its destabilization in the bulk solvation environment.

Keywords

References

  1. Keeffe, J. R.; Kresge, A. J. In The Chemistry of Enols; Rappoport, Z., Ed.; Wiely: Chichester, England, 1990; Chapter 7.
  2. Jencks, W. P. Chem. Rev. 1985, 85, 511. https://doi.org/10.1021/cr00070a001
  3. Jencks, W. P.; Haber, M. T.; Herschlag, D.; Nazaretian, K. L. J. Am. Chem. Soc. 1986, 108, 479. https://doi.org/10.1021/ja00263a019
  4. Saunders, Jr., W. H.; Verth, J. E. V. J. Org. Chem. 1995, 60, 3452. https://doi.org/10.1021/jo00116a036
  5. Bernasconi, C. E; Wenzel, P. J. J. Am. Chem. Soc. 1996,118, 11446. https://doi.org/10.1021/ja961837q
  6. Bernasconi, C. E; Wenzel, P. J.; Keeffe, J. R; Gronert, S. J. Am. Chem. Soc. 1997,119, 4008. https://doi.org/10.1021/ja963492h
  7. Murray, C. J.; Jencks, W. P. J. Am. Chem. Soc. 1990, 112, 1880. https://doi.org/10.1021/ja00161a036
  8. Bernasconi, C. E; Wenzel, P. J. J. Am. Chem. Soc. 1994, 116, 5405. https://doi.org/10.1021/ja00091a052
  9. Bernasconi, C. E; Panda, M; Stronach, M. W. J. Am. Chem. Soc. 1995, 111, 9206. https://doi.org/10.1021/ja00141a013
  10. Bernasconi, C. E; Wenzel, P. J. J. Am. Chem. Soc. 1996, 118, 10494. https://doi.org/10.1021/ja960233j
  11. Nevy, J. B.; Hawkinson, D. C; Blotny, G.; Yao, X.; Pollack, R. M. J. Am. Chem. Soc. 1997, 119, 12722. https://doi.org/10.1021/ja972600c
  12. Yao, X.; Gold, M. A.; Pollack, R M. J. Am. Chem. Soc. 1999,121, 6220. https://doi.org/10.1021/ja990070+
  13. Radzicka, A.; Wolfenden, R. Science 1995, 267, 90. https://doi.org/10.1126/science.7809611
  14. Kuliopulos, A.; Mildvan, A. S.; Shortle, D.; Talalay, P. Biochemistry 1989, 28, 149. https://doi.org/10.1021/bi00427a022
  15. Bounds, P. L.; Pollack, R. M. Biochemistry 1987, 26, 2263. https://doi.org/10.1021/bi00382a029
  16. Zawrotny, M. E.; Hawkinson, D. C; Blotny, G.; Pollack, R. M. Biochemistry 1996, 35, 6438. https://doi.org/10.1021/bi953025x
  17. Viger, A.; Coustal, S.; Marquet, A. J. Am. Chem. Soc. 1981, 103, 451. https://doi.org/10.1021/ja00392a034
  18. Austin, J. C; Kuliopulos, A.; Mildvan, A. S.; Spiro, T. G. Protein Sci. 1992, 1, 259.
  19. Austin, J. C; Zhao, Q.; Jordan, T.; Talalay, P.; Mildvan, A. S.; Spiro, T. G. Biochemistry 1995, 34, 4441. https://doi.org/10.1021/bi00013a037
  20. Li, Y K.; Kuliopulos, A.; Mildvan, A. S.; Talalay, P. Biochemistry 1993, 32, 1816. https://doi.org/10.1021/bi00058a016
  21. Holman, C. M.; Benisek, W. E Biochemistry 1995, 34, 14245. https://doi.org/10.1021/bi00043a032
  22. Weintraub, H.; Alfsen, A.; Baulieu, E.-E. Eur. J. Biochem. 1970,12, 217. https://doi.org/10.1111/j.1432-1033.1970.tb00840.x
  23. Wu, Z. R; Ebrahimian, S.; Zawrotny, M. E.; Thornburg, L. D.; Perez-Alvarado, G. C; Brothers, P.; Pollack, R. M.; Summers, M. E Science 1997, 276, 415. https://doi.org/10.1126/science.276.5311.415
  24. Thornburg, L. D.; Henot, E; Bash, D. P.; Hawkinson, D. C; Bartel, S. D.; Pollack, R. M. Biochemistry 1998, 37, 10499. https://doi.org/10.1021/bi980099a
  25. Pollack, R. M.; Thornburg, L. D.; Wu, Z. R; Summers, M. E Arch. Biochem. Biophys. 1999, 370, 9. https://doi.org/10.1006/abbi.1999.1384
  26. Cho, H.-S.; Choi, G.; Choi, K. Y; Oh, Y.-H.; Biochemistry 1998, 37, 8325.
  27. Choi, G.; Ha, N.-C; Kim, S. W.; Kim, D.-H.; Park, S.; Oh, B.-H.; Choi, K. Y Biochemistry 2000, 39, 903. https://doi.org/10.1021/bi991579k
  28. Kim, D.-H.; Jang, D. S.; Nam, G. H.; Choi, G.; Kim, J.-S.; Ha, N.-C; Kim, M.-S.; Oh, B.-H.; Choi, K. Y Biochemistry 2000, 39, 4581. https://doi.org/10.1021/bi992119u
  29. Zhao, Q.; Abeygunawardana, C; Talalay, P.; Mildvan, A. S. Proc. Natl. Acad. Sci. 1996, 93, 8220. https://doi.org/10.1073/pnas.93.16.8220
  30. Zhao, Q.; Abeygunawardana, C; Gittis, A. G.; Mildvan, A. S. Biochemistry 1997, 36, 14616. https://doi.org/10.1021/bi971549m
  31. Massiah, M. A.; Abeygimawardana, C; Gittis, A. G.; Mildvan, A. S. Biochemistry 1998, 37, 14701. https://doi.org/10.1021/bi981447b
  32. Kim, K. S.; Oh, K. S.; Lee, J. Y. Proc. Natl. Acad. Sci. USA 2000, 97, 6373. https://doi.org/10.1073/pnas.97.12.6373
  33. Gerlt, J. A.; Gassman, P. G. J. Am. Chem. Soc. 1993, 115, 11552. https://doi.org/10.1021/ja00077a062
  34. Guthrie, J. P.; Kluger, R. J. Am. Chem. Soc. 1993,115, 11569. https://doi.org/10.1021/ja00077a063
  35. Zeng, B.; Pollack, R. M. J. Am. Chem. Soc. 1991, 113, 3838. https://doi.org/10.1021/ja00010a028
  36. Hawkinson, D. C; Eames, T. C. M; Pollack, R. M. Biochemistry 1991, 30, 10849. https://doi.org/10.1021/bi00109a007
  37. Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65,239. https://doi.org/10.1016/0301-0104(82)85072-6
  38. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. https://doi.org/10.1016/0301-0104(81)85090-2
  39. Shan, S.; Herschlag, D. Proc. Natl. Acad. Sci. USA 1996, 93, 14474. https://doi.org/10.1073/pnas.93.25.14474
  40. Gerlt, J. A.; Gassman, P. G. J. Am. Chem. Soc. 1992, 114, 5928. https://doi.org/10.1021/ja00041a004
  41. Gerlt, J. A.; Kozarich, J. W.; Kenyon, G. L.; Gassman, P. G. J. Am. Chem. Soc. 1991,113, 9667. https://doi.org/10.1021/ja00025a039
  42. Chiang, Y.; Kresge, A. J.; Pruszynski, P.; Schepp, N. P.; Wirz, J. Angew. Chem., Int. Ed. Engl. 1990, 29, 792. https://doi.org/10.1002/anie.199007921
  43. Kluger, R. Chem. Rev. 1990, 90, 1151. https://doi.org/10.1021/cr00105a005
  44. Thibblin, A.; Jencks, W. P. J. Am. Chem. Soc. 1979,101, 4963. https://doi.org/10.1021/ja00511a028
  45. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M; Montgomery, J. A. J. Comput. Chem. 1993,14, 1347. https://doi.org/10.1002/jcc.540141112
  46. Baker, J. J. Comput. Chem. 1986, 7, 385. https://doi.org/10.1002/jcc.540070402
  47. Helgaker, T. Chem. Phys. Lett. 1991, 182, 305.
  48. Bell, S.; Crighton, J. S. J. Chem. Phys. 1984, 80, 2464. https://doi.org/10.1063/1.446996
  49. Gonzalez, C; Schlegel, B. H. J. Chem. Phys. 1989, 90, 2154. https://doi.org/10.1063/1.456010
  50. Moller, C; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  51. Albery, W. J. J. Chem. Soc, Faraday Trans. 1982, 78, 1579. https://doi.org/10.1039/f19827801579
  52. Hegarty, A. E; Jencks, W. P. J. Am. Chem. Soc. 1975, 97, 7188. https://doi.org/10.1021/ja00857a052
  53. Brothers, P. N.; Blotny, G.; Qi, L.; Pollack, R. M. Biochemistry 1995,54,15453. https://doi.org/10.1021/bi00047a009
  54. Jencks, W. P. J. Am. Chem. Soc. 1972, 94, 4731. https://doi.org/10.1021/ja00768a052
  55. Holman, C. M.; Benisek, W. F. Biochemistry 1994, 33, 2672. https://doi.org/10.1021/bi00175a041
  56. Xue, L.; Talalay, P.; Mildvan, A. S. Biochemistry 1990, 29, 7491. https://doi.org/10.1021/bi00484a019
  57. Ross, A. M.; Whalen, D. L.; Eldin, S.; Pollack, R. M. J. Am. Chem. Soc. 1988, 110, 1981. https://doi.org/10.1021/ja00214a061
  58. Keeffe, J. R.; Kresge, A. J.; Yin, Y J. Am. Chem. Soc. 1988,110, 1982. https://doi.org/10.1021/ja00214a062
  59. Jencks, W. P. Adv. Enzymol. 1975, 43, 219.
  60. Henderson, R. J. Mol. Biol. 1970, 54, 341. https://doi.org/10.1016/0022-2836(70)90434-1
  61. Ruhlmann, A.; Kukla, D.; Schwager, P.; Barrels, K.; Huber, R. J. Mol. Biol. 1973, 77, 417. https://doi.org/10.1016/0022-2836(73)90448-8
  62. Blow, D. M.; Janin, J.; Sweet, R. M. Nature 1974, 249, 54. https://doi.org/10.1038/249054a0
  63. Jencks, W. P Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4046. https://doi.org/10.1073/pnas.78.7.4046
  64. Park, PL; Suh, J.; Lee, S. J. Am. Chem. Soc. 2000,122, 3901. https://doi.org/10.1021/ja992849p

Cited by

  1. Envisioning an enzymatic Diels–Alder reaction by in situ acid–base catalyzed diene generation vol.48, pp.45, 2012, https://doi.org/10.1039/c2cc31502e
  2. Novel Approach for Identifying Key Residues in Enzymatic Reactions: Proton Abstraction in Ketosteroid Isomerase vol.118, pp.46, 2014, https://doi.org/10.1021/jp508423s
  3. Theoretical study of enzymatically catalyzed tautomerization of carbon acids in aqueous solution: quantum calculations and steered molecular dynamics simulations vol.22, pp.2, 2016, https://doi.org/10.1007/s00894-016-2914-3