DOI QR코드

DOI QR Code

A SOD-Based Amperometric Biosensor for Superoxide Ion

  • Tian, Yang (Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Okajima, Takeyoshi (Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Kitamura, Fusao (Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Ohsaka, Takeo (Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)
  • Published : 2002.11.01

Abstract

A superoxide dismutase (SOD)-based superoxide ion $(O_2^-)$ sensor was fabricated by immobilizing SOD on a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) which was prepared on a gold electrode. The SAM of MPA was found to function as an effective promoter for the electrode reaction of SOD. The amperometric response to $(O_2^-)$ was monitored at 300mV and -100mV vs. Ag/ Agel in 5mM phosphate buffer solution containing $KO_2$. The sensor was proved to have a high sensitivity, selectivity and short response time (<5 s) and negligible interference.

Keywords

References

  1. Biochim. Biophys. Acta v.1569 Y. Tian;M. Shioda;S. Kasahara;T. Okajima;L. Mao;T. Hisabori;T. Ohsaka https://doi.org/10.1016/S0304-4165(01)00246-X
  2. Anal. Sci. v.17 T. Ohsaka;Y. Tian;L. Mao;T. Okajima https://doi.org/10.2116/analsci.17.379
  3. Anal. Chem. v.74 Y. Tian;L. Mao.T. Okajima;T. Ohsaka https://doi.org/10.1021/ac0200318
  4. Chem. Comm. T. Ohsaka;Y. Tian;M. Shioda;S. Kasahara;T. Okajima
  5. An Introduction to Ultrathin Organic Films-From Langmuir-Blodgett to Self-Assembly A. Ulman
  6. Anal. Chim. Acta v.454 B. Ge;F. Lisdat https://doi.org/10.1016/S0003-2670(01)01545-8
  7. J. Colloid Interface Sci. v.144 A. His;B. Liedberg https://doi.org/10.1016/0021-9797(91)90259-B
  8. manuscript in preparation Y. Tian;T. Okajima;T. Ohsaka
  9. Mol. Cell. Biochem. v.36 M. L. Salin;W. W. Wilson https://doi.org/10.1007/BF02357032
  10. J. Electroanal. Chem. v.512 K. Kim;J. Kwak https://doi.org/10.1016/S0022-0728(01)00588-5
  11. J. Biol. Chem. v.244 J. M. McCord;I. Fridovich
  12. Anal. Chim. Acta v.358 S. Mesaros;Z. Vankova;S. Grunfeld;A. Mesarosova;T. Malinski https://doi.org/10.1016/S0003-2670(97)00589-8
  13. J. Electroanal. Chem. v.484 K. V. Gobi;F. Mizutani https://doi.org/10.1016/S0022-0728(00)00077-2
  14. Neurosci. Methods v.70 M. Miele;M. J. Fillenz https://doi.org/10.1016/S0165-0270(96)00094-5
  15. Neurosci. Lett. v.29 T. Zetterstrom;L. Vernet;U. Ungerstedt;T. B. Jonzon;B. B. Fredholm https://doi.org/10.1016/0304-3940(82)90338-X

Cited by

  1. Determination of Antioxidant Capacity by Using Xanthine Oxidase Bioreactor Coupled with Flow-through H2O2 Amperometric Biosensor 2010, https://doi.org/10.1002/elan.201000544
  2. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion vol.21, pp.4, 2005, https://doi.org/10.1016/j.bios.2004.12.006