DOI QR코드

DOI QR Code

Characterization of Titanium Implant Anodized in Various Electrolytes

  • Kim, Hyung-Sun (Eco-Nano Research Center, Korea Institute of Science & Technology(KIST)) ;
  • Cho, Won-Il (Eco-Nano Research Center, Korea Institute of Science & Technology(KIST)) ;
  • Cho, Byung-Won (Eco-Nano Research Center, Korea Institute of Science & Technology(KIST)) ;
  • Park, Joon-Bong (Department of Periodontology, College of Dentistry, Kyunghee University) ;
  • Hur, Yin-Sik (Department of Periodontology, College of Dentistry, Kyunghee University)
  • Published : 2002.05.01

Abstract

Commercial titanium rod was anodized in three types of electrolytes such as 0.06 mol/L $\beta-glycerophosphate+0.3mol/L$ calcium acetate, 0.06mol/L $\beta-glycerophosphate+0.3mol/L$ sodium acetate and 0.06 mol/L $\beta-glycerophosphate+5mol/L$ calcium phosphate. The titanium oxide layer $(TiO_2)$ was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron spectroscopy chemical analysis (ESCA). Numerous micropores were observed on the titanium oxide layer by SEM. The diameter of micropores increased with the increase of electrolytic voltage. The titanium oxide layer was composed of anatase structure. The phosphorous element was detected at 130 eV binding energy, but calcium was not found in the oxide layer because of lower contents. After anodizing the oxide layer was etched in the 30g/L NaOH solution at $80^{\circ}C$ for 1hr. The surroundings of micropores were much more smoothed and rounded than before alkaline etching.

Keywords

References

  1. J. A. Filbey and J. P. Wightman, J. Adhesion, 28,1(1989) https://doi.org/10.1080/00218468908030166
  2. H. Ishizawa and M. Ogino, J. Materiats Science, 34,5893(1999) https://doi.org/10.1023/A:1004739108534
  3. A.C. Kennedy, R. Kohler and P. Poole, Int. J. Adhesion and Adhesives, 3,133(1983) https://doi.org/10.1016/0143-7496(83)90118-5
  4. P. J. Henry, J. Prvsthet. Dent. 79,100(1998) https://doi.org/10.1016/S0022-3913(98)70201-X
  5. H. Ishizawa and M. Ogino, J. Biomedical Materials Research, 29, 65(1995) https://doi.org/10.1002/jbm.820290110
  6. G. A. EL-Mahdy and S. S. Mahmoud, J. Materiats Science Technology,14,241(1998) https://doi.org/10.1179/026708398790301539
  7. D. Buser, R. K. Schnek, S. Steinemann, J. P. FioBllini, C. H. Fox and H. Stich, J. Biomed. Mater. Res., 25, 889(1991) https://doi.org/10.1002/jbm.820250708
  8. K. Gotfredsen, A. Wennerberg, C. Johanson and LT. Skovgaard, J. Biomed. Mater. Res., 29,1223(1991) https://doi.org/10.1002/jbm.820291009
  9. P. Kurze, W. Krysmamm and HG. Schneider, Cryst. Res. Technol, 21,1603(1986) https://doi.org/10.1002/crat.2170211224
  10. H. Ishizawa, M. Fujino and M. Ogino, J. Biomedical Materials Research, 35,199(1997) https://doi.org/10.1002/(SICI)1097-4636(199705)35:2<199::AID-JBM8>3.0.CO;2-I
  11. A. Wennerberg, T. Albreaksson and B. Anderson, Int. J. Oral Maxillofac Implants. 11,38(1996)
  12. C. Larsson, P. Thomsen and BO. Aronsson, Biomaterials, 17, 605(1996) https://doi.org/10.1016/0142-9612(96)88711-4
  13. R. Hazan, R. Bicner and U. Oron, BiomateriaIs, 14, 570(1993) https://doi.org/10.1016/0142-9612(93)90172-X
  14. K. J. Byeon, C. S. Kim, X. Zhu and K. H. Kim, J. Biomed. Eng. Res., 21, 273(2000)
  15. J. Gottlow, P. J. Henry, A. E. S. Tan, B. P. Allan, C. Johnson and J. Hall, Applied Osseointegration Research, 1, 28(2000)