초록
본 논문은 용접이상을 검출하기 위한 특징벡터의 선택과 퍼지 기술을 사용한 용접이상 분류기의 설계 및 구현에 관한 것이다. 용접이상 특징 벡터로써 시간 영역에서 절대적분치, 영교차수를, 주파수 영역에서 파워 스펙트럼 계수를, 두 영역 모두를 고려하여 히스토그램을 비교하였다. 그래프 분석에 의하여 특징벡터로서 히스토그램을 선택하였고, 상대 히스토그램의 최대 빈도수와 대응 구간 값이 정상 용접과 용입불량을 구분하는 데 가장 유효하다는 것을 발견하였다. 이 특징 벡터를 사용하여 퍼지 용접이상 분류기를 구현하였고, 695개의 용접 데이터 프레임에 대하여 시험하여 정분류율이 92.96%을 보여, 그 유효성을 입증하였다. 실험실에서의 결과로써 실제적인 산업용 레이저 용접 검사기로써 상대적 히스토그램을 이용한 퍼지 용접이상 분류기가 효과적임을 알 수 있다.
This paper is addressed to welding defect feature vector selection and implementation method of welding defect classifier using fuzzy techniques. We compare IAV, zero-crossing number as time domain analysis, power spectrum coefficient as frequency domain, histogram as both domain for welding defect feature selection. We choose histogram as feature vector by graph analysis and find out that maximum frequent occurrence number and section of corresponding signal scale in relative histogram show obvious difference between normal welding and voiding with penetration depth defect. We implement a fuzzy welding defect classifier using these feature vector, test it to verify its effectiveness for 695 welding data frame which consist of 4000 sampled data. As result of test, correct classification rate is 92.96%. Lab experimental results show a effectiveness of fuzzy welding defect classifier using relative histogram for practical Laser welding monitoring system in industry.