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Warehouse Storage Capacity with Leased Space for Different

Storage Policies

Moon-Kyu Lee

Faculty of Mechanical and Automotive Engineering, Keimyung University, Taegu, 704-701

In this paper, an approach is presented for determining the required storage capacity of a warehouse with leased
public space. Storage assignment policies considered are randomized and class-based storage assignment
policies. An analytic model for each of the storage policies is formulated with the objective of minimizing the
cost of owned storage space and leased space while satisfying a desired service level of protection against space
shortages. Cost functions used in the models are piecewise liear with fixed costs. For the models, algorithms are
developed to generate optimal solutions. The approach is applied to the systems where the standard
economic-order-quantity inventory model is used for all items being stored in the warehouse.
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1. Introduction

In this paper, we consider a problem of determining
the storage capacity of warehouse systems. Any
storage requirement over the in-house service level
needs to be satisfied by the storage space being leased
from outside sources. The required storage capacity is
then defined as the amount of storage space needed to
accommodate the materials to be stored in order to
meet a desired service level. The major factor that
influences storage sizing is certainly the storage
assignment policy which defines the way of assigning
items to storage locations. In this paper, we consider
two popular storage policies, randomized storage
assignment (RAN) and N-class turnover-based storage
(CN).

Warehouse sizing problems seeking a compromise

between private warehousing and public warehousing
have been substantially studied so far. Ballou (1999)
presented a trial-and-error method to seek the best
combination of private-public warehouse size alterna-
tives. Dynamic natures considered in the method
include the seasonality of space requirements. Hung
and Fisk (1984) gave an alternative formulation to
Ballou's method for static and dynamic warehouse
sizing problems. They showed the problems could be
formulated as linear programming models which can
be solved easily by a simplex routine. Recently, Rao
and Rao (1998) presented a simpler method of deter-
mining optimal solutions for the same static problem.
They extended the static model to the dynamic models
dealing with costs varying over time and economies of
scale in fixed and/or operating costs. Cormier and
Gunn (1996) considered a static problem incorporating
inventory policy cost, warehouse cost, and the cost
associated with leasing space from outside sources. A
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similar study (1996) without consideration of ware-
house leasing was made by the same authors. Jucker et
al. (1982) investigated a static problem to determine
the capacities of a single production plant and a set of
regional leased warehouses which maximize expected
profit. Assuming that any regional demand exceeding
warchouse capacity is lost, an efficient algorithm
based on the Kuhn-Tucker conditions is developed.
Dynamic problems with a single warehouse were
studied by White and Francis (1971) and by Lowe et
al. (1979). Additional review of storage capacity
models is given in Cormier and Gunn (1992). Recently,
Cho and Bozer (2001) presented a simple algorithm to
estimate the storage capacity for automated storage /
retrieval systems under stochastic demand. The design
criteria considered in their study are maximum
permissible overflow probability and maximum allow-
able storage/retrieval machine utilization. The Other
related research on storage sizing includes those of
Bafna (1983) and Mullens (1981) where general practical
procedures are presented.

A perusal of the literature shows that no research has
analytically investigated the effect of the storage
policies on the storage capacity while leasing of
external storage space is allowed. Recently, Lee (1998,
1999) presented the approaches to optimally deter-
mining storage capacities for different storage policies.
However, the approaches are based on the simple
linear cost curve without any fixed costs. Therefore,
they might not be well applied in real situations in
which storage space costs are not linear due to the
piecewise nature with fixed costs. In this paper, we
extend the approach for the RAN and CN policies
presented in Lee (1999) to consider more general cost
functions of privately owned and public leased storage
spaces. An application of the models to systems
operating under the economic-order-quantity (EOQ)
inventory model is presented and the effects of
demand distribution on the storage capacity and
system throughput are investigated.

2. Models for Determining Storage
Capacity

In general, there are two choices for storage ware-
housing: operating owned warehouse space and leasing
space such as from a public warehouse. Depending on
the costs associated with each choice of warehousing,
the most economical combination of the two ware-
housing choices needs to be selected. Initial capital
expenditures required for owned storage space are
substantially higher than those of leased one and future
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expansion is very limited. Therefore, there is a need 1o
meet owned storage space requirements such that a
high utilization is realized and to take advantage of
leased space where possible.

In order to determine the required storage capacity
for storage systems, Francis et al. (1992) presented
two different approaches, a service-level approach and
a cost-based approach. In the former approach, the
total amount of storage space is minimized without
exceeding a given probability, o (0 <« <1), of a space
shortage occurring (hereafter, we call it the shortage
probability). The service level of the system is then
equal to 1- . If the storage requirement is greater than
the storage capacity, a space shortage occurs. Under
such conditions, the excess space requirement is
assumed to be met via leased storage space. In the
cost-based approach, the storage capacity is determined
by minimizing the sum of the cost of owning space
and contracting space incurred by space shortage
without consideration of the service level. In this
paper, we combine the two approaches into a modified
cost-based approach by which the storage capacity is
determined to minimize the total cost while satisfying
the service level required.

Let X and X, /=1, .., »n, be random variables
which represent the aggregate inventory level of the
overall system and the inventory level of item i,
respectively. Here, we consider the case where every
X follows a uniform distribution with g; and #; which
are the lower and upper bounds of the random
variable, respectively. One example of such a case is a
system in which the standard EOQ model with g,
being zero is applied to all items. The storage capacity
at the 1- ¢ service level, S( @), satisfies P, (X <S(a))
>1-a.

2.1 Storage Space Costs

In the literature, storage system costs have been
modeled in various ways. Ballou(1999) presented
conceptual cost functions applied to four different
systems including public, leased, and private ware-
housing systems. In his discussion of private versus
public warehousing decisions, the private warehouse
cost is modeled as a sum of a monthly fixed
component and a monthly variable component which
is a linearly increasing function of storage space
required. The leased warehouse cost is linear without
any fixed cost. For the static cases of warehouse size
expansion, Cormier and Gunn (1996) used the similar
cost model. Meanwhile, only linear variable costs have
been considered often in the literature for the sake of
simplicity (Lowe et al., 1979; Rao and Rao, 1998;
White and Francis, 1971). On the other hand, Jucker ef
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al. (1982) used a nonlinear cost model which takes the
form K K® where a is the economies-of-scale para-
meter and K7, a scaling factor. However, this simple
nonlinear cost model may be too rigid to represent
practical warehousing costs since fixed costs are not
considered in the model and only concave (0 <o < 1)
or convex (e > 1) cost functions are assumed.

For automated storage/retrieval systems(AS /RS),
the total space cost must be modeled as a step function
with jumps due to the addition of each S /R machine
to the storage system as the system size increases. For
the cost of installing a storage rack, Zollinger (1982)
gave a quadratic cost function obtained by a regression
analysis of cost data for more than 60 AS/RS installa-
tions. In general, each regression cost model for a
particular system should have its own different
structure depending on the cost data used. Hence, it is
almost impossible to develop an effective optimization
algorithm which can be generally applied to any
regression cost model. Meanwhile, most studies on the
design of AS/R system assumes a linear cost model
with fixed facility costs (Asayeri er al., 1985;
Karasawa et al., 1980).

When a combination of a private warehouse and a
leased public warehouse is operated, transportation of
materials to the public warehouse should be occurred.
Since items are typically transported on a lump-sum

basis, transportation costs obviously consist of a fixed,

component and a variable one.
In this paper, we consider the following generalized
cost models :

C°(yy) = fo;+ s0;* ¥
C'(y)=fri+sri*y,

if 0; <y <015
if Rij,<Rj+1

where C°(y;) = private warehouse cost; y; = size of
private warehouse in area units; fo; = fixed cost for
the 4-#4 region of yy, [0y, Oir1); so; = variable private
warehouse cost per unit area of storage for unit time;
C’(y,)=leased public warehouse cost; fr;= fixed
cost for the j-¢k region of y,, [R;, Ri+1); sv; = variable
private warehouse cost per unit area of storage for unit
time. A typical example of the cost models is shown in
<Figure 1>, Note that the existing cost models (Cormier
and Gunn, 1996, Lowe et al., 1979; Rao and Rao,
1998; White and Francis, 1971) are special cases of
our generalized cost models. In addition, the generalized
cost models can represent well the transportation costs
between the public and the private warchouses and
any other nonlinear cost curve can be approximated
flexibly due to the piecewise nature.

2.2 Storage Capacity under RAN
We first consider the RAN policy where incoming
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fo,
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space

(b) Public leased storage space

Figure 1. Cost curves for owned and public
storage systems.

items are equally likely to be stored in any of storage
locations in the warehouse. When no shortage is
allowed, the required storage capacity of the ware-
house is then equal to the maximum of aggregate
inventory level for all items. In real situations, due to
the dynamic nature of the replenishment process and
retrieval operation of items, it is extremely difficult to
exactly predict the aggregate inventory level.

In this paper, for the convenience of mathematical
description, we adopt most of the terminologies used
in Lee (1999). By definition,

X= le,-.

Let Z= (X — p)/c where 2= Zl(ai+bi)/2
12 i=

and 5= ( 26 e)*/12) . Then, if » is suffi

ciently large, Z follows approximately the standard
normal distribution, N (0,1). Thus, for a given
shortage probability a, the storage capacity under the
RAN policy can be represented by a function of the
unknown variable, a :

Sran(@) = 5+ 2,0
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where o < a; and z, is determined by Pr(Z> z,) =
e for 0< g <.

As shown in (1999), the expected amount of space
shortage per unit time is given by

Epan(@) =a-E(X—=(p+ 2,0/ X>
nt+z, 00+ (1 —a)0
= glexp(—24/2)/V2r — az,]

<Figure 1> shows that each warehouse cost is
jumping at a set of discrete points of storage space.
They are {0), O,,,0s} for the privately owned
space and {R), Rs, -- Rr,} for the public leased
space. A value of ¢ associated with each of these
points can be found from the relationships :

Sran(e)) = u+z,06= 0, i=1,2,--,S and
Eran(a)) = ol exp (—zi;/z)/\@} — az,]
=R, 7=1,2,-,T.

Since Sgan(@) and Eran(@) are monotonically
decreasing and increasing, respectively as ¢ increases,
we can easily find the associated o] and o) values
using a simple search technique as the bisectional
search method.

NowletO = {a/, i=1, 2,-, S}, R= {a], j=1,2,
-, T}, and S = QUR. We first sequence all ele-
ments in S in increasing order. Since the public
storage cost curve is not defined for «> ] and also,
a should be not greater than the desired service level,
ao, we delete every @ from S which is greater than
@ =min(a;”, o). Then, we define a set of mutually
exclusive feasible regions, @, £=1, 2, ---, K, of ¢
as @ =[ @i, di+1) where ¢, = the - ranked value
of @ €S and dx =ay,.

Let i (%) and j (&) be the indices of the space regions
which satisfy

O i< Sran{Pe+1) < Sran(d) < 0 ;n 4
and

Rip< Egan(¢y) < Eran($e+ VSR im+1,

respectively. Then the slopes, ¢} and ¢; of the two
cost curves in the k-4 region will be

©p= 50 ;pn and @, = s7 ;.

Using the slopes, the total cost per unit time in the
region can be expressed as a function of «:

TC ganil @) = ¢pSran(@) + @ Eranle) + FC,
= i+ 2,0) + ¢ or(a) + FC,

Where ¢ks a< ¢l'+1y Fck = fol'(k) - (Dzoi(k) + frj(k)
— ei Ryp and Ha) = exp(—22/2)/V 21 — oz,

The optimal storage capacity under RAN can be
obtained by searching for @ which minimizes the total
cost for all feasible regions. In this regard, for each of
the region of ¢ < a,, the following sub-problem needs

to be solved:

(P1,) Minimize ¢%(u+z,+ o)+ ¢} o #(2) + FC,
subject to

Pe<a<dpp (hH

Once we solve all the sub-problems, (P1,), £=1, 2,
-, K, the optimal solution is then determined by
choosing the region which yields the minimum total
cost. Note that (P1,) is a single variable optimization
problem with the following property for the variable
terms in the cost function (Lee, 1999)

Property 1. z,and »(e) are convex over (0 < a<(.5.

Since FC, is constant, it follows from Property 1
that TCrani (@) is convex. Thus, ignoring the constraint
(1), the unconstrained optimal solution of (P1;) will
be obtained from the following condition:

dTCRANk(a) 0~ , A ,
T, %koz T 7 (@)

= o(gra— ¢})/ exp (—22/2)/V2r =0

Solving the above equation for ¢ results in
ar=¢i/ ep If $,<a} < ¢,4q, the optimal solution
of the sub-problem is obviously ¢}y (%) = a}. Other-

wise, it is enough to compare only the two boundary
points due to the convexity of the cost function. This
gives

aran (B)= [ b if TCrans(0s) < TC rane(Si+1);
RAN $4+1, otherwise.

In this way, we can solve every sub-problem for each
region. Then the global optimal solution over all
regions will be o}y = akan (k") Where £* = argmin,
T Cranz ( @ran(®)). The corresponding optimal storage
capacities are

Sran(@kan) = # + zakay 0 and
ERAN(Q;{AN) = 3' T(GRAN)

with the minimum warehouse cost per unit time =
TCrant' ( @'ran ).
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2.3 Storage Capacity under the CN Policy

The class-based storage policy seems to be more
practical than the RAN policy in that groups of
frequent items are stored at storage locations which are
closer to the input/output point in the warehouse.
Under this policy, items and storage locations are
jointly partitioned into a small number of classes based
on item turnover distributions and travel times of
vehicles, respectively. Within any class, RAN is
assumed to be applied to assign items to storage
locations.

Suppose that n items are divided into N classes such
that class ; consists of items k-, +1, k-1 +2, ..., &;,
j=1, .., N where iy =0, kv= n, and N < . Let
a=(a, a, -, ay) be a vector of class shortage
probabilities which are decision variables. Then, the
storage capacity for each class can be determined
using the same technique discussed under the RAN
policy. The system storage capacity for the CN policy
is

N N
Senla) = ;SéN(aj) =+ ]leai?fj

where S¢y(e;) = the storage capacity of class ;
when its shortage probability is given by «; and o; =

k; 1/2
( ?_‘. lw;“’/ 12) . The space shortage for the CN
i=hki +
policy is expressed as follows:

N
Exn(a)= Zl (?,'(GXD( _221‘/2)/‘/_2—75_ j24)-

Then, we can formulate the storage capacity problem
for CN as a nonlinear integer program:

S T
(P2) Minimize Scx(a) 25 50, Y+ Ecx(a) 2 sy

S T
+ E(f"s — 50,0,) v, + ;_](fn — 57,00y,

subject to
N
Ha-e)=z1-a @
0,< Sen( @y, + M(1—y,) 3)
Sen( @)y, < Og4q (4)
S
§1y5= 1 (5)
yve=0o0rl Vs (6)
RtsECN(G)yt'Jf' MQ ‘“yt) (7)
Ecn(@)y; < Ripy (8
T
2 yi=1 ©)

y:=0 or 1 Vi (10)

0<a;,<u, Vi

(1)

where #, is an upper bound of the shortage pro-
babilities which satisfies the inequality :

(1 —u)"21— a

Constraint (2) describes the system shortage- pro-
bability requirement. Constraints (3)~(6) assure that
the calculated owned space is included in a single
space region which is defined by a pair of discrete
points of space, [Os, Os+1), s=1, ---, S. The same
condition for the public space requirement is ensured
by constraints (7)~-(10). Finally, a feasible range of
each shortage probability is given by constraint (11).

Now, the total cost for (s, #) space region combina-
tion becomes

TC(Sth a) = 115'CN( a) + /IZECN(G) + FCS[
N N
= /11(//) + ]Z Zaj/(\fj) + /12 jgl B‘,(exp(—z%,-/i!)
/V2r — a,2,) + FCy
Jo
= /11//\1 +Ag ;::1 B’,[ (A - a,-)z[,j + exp(—zza,-/Z)
/V2r]l+ FCy (12)
where FCy = fo. — 50505 + fri—sri Ry, Ai=s0s, A2
= s, and A=A,/ A,. Since we want to minimize the
total cost such that overall shortage probability should
not exceed ¢, after eliminating the constant terms in

(12), the sub-problem of (P2) for (s, #) space region
combination can be formulated as follows:

I
(P2,;) Minimize }:1 o[ (A —a)z,,
“

+ exp(—2%;/2)/V2x]
¥
subject to _1:[1(1 —a)21- a

0.< Sen(@) < Oy
RrSECN(G) <R
OSajSua Vi

Notice that if we let 7; = —In(1— @), since z,;
= — 21—, the variable term in the objective function
of (P2,;) becomes

(A — @)z ;+ exp(—2%/2)/Vor
=(1-¢e 7~ Az + exp(—zze-n/Z)/m

This objective function has the following property
(Lee, 1999):

Property 2. Let g(r)=(1—e " — Dz,
+ exp(-—zzg—r/Z)/\/_Z—z—r. Then g(z) is



AR A5 QATLE LAT AL AFEF 333

convex over (< r< —In(.5

Following Property 2, we can rewrite the problem
(P2;,) as a separable convex program:

N
(P3) Minimize 2 0;8(r)

(13)
N
subject to Z_] <—In(1l-a)
0.< Sen (1)< Oy (14)
R,< ECN(t)<Rt+1 (15)
0<r<u, (16)

where 7= an N-dimensional vector of unknowns,
Sen(r) =Sen(@)|,, - 1_.». Vi, Etn(r)=Ecn(a)
lg—1-c Viand u,= —In(1—u.).

The first derivative of g(t;) in the objective function
(13) is obtained by using the chain rule :

_ ag( Tj) _ /iza + 7‘(“) aa’
)= = T a
=[(a—D/y(z)]e 7

=e "(1—e "= A/y(z,_ )

(17)
where y(z) = exp (—2%/2)/V 2x. Note that when A< 1,

Srp<0for ;< = —In(1—-4),
8(z;) >0, otherwise.

On the other hand, when A>1, §(z;) <0 V1; There-
fore it follows from the convexity property of g(r;)
that when A <1, g(r;) is non-increasing over r; <
—In(1—A), and non-decreasing over ;> —In(1—
A). When A =1, g(z;) will be non-increasing V.
By the way, it is easily found from (17) that there is at
most only a single value, 7} of 7; which satisfies &(z;)
=0, for all ;:

'=1y=—In(1-A) for A<1,

= co, otherwise.
From this analysis, we know that ignoring constraints

(14) and (15) the problem (P2) is a special case of the
following nonlinear program:

(P4) Minimize Z= Z cif(x;) (18)
subject to Z,l X< (19)
0<x;<r, Vi (20)

where ci(ci=¢j, i<j), n and ry (r1=7) are

positive constants and f(x;) is a nonnegative convex

function of x; over 0 < x; < max(xy, »») whose minimum
lies at x;=x>0 Vi Also, f(x;) is assumed to be
nonpositive and concave for (< x; <xj. Lee (1998)
suggested a search procedure (here we call it
Algorithm 1) which generates optimal solutions for
(P4). Therefore, (P3) without constraints (14) and (15)
can be solved optimally using the algorithm with the
following mapping :
n=N, i=j c;=0;, x= T;

f(xi):g(‘l'j),
n=—mm(l—a), n=u, and xy=171. (21)
Consequently, considering (16) the feasible solution
for a given y will be

min (max (0, z;), «.)and

min (max (0, z;), uo)].

ri(p)=
a@;=1— exp[—

Due to the monotonic nature of S’'cn(7) and Etn(7)
according to the variation of , constraints (14) and
(15) reduce to corresponding boundary constraints of
the dual variable 4. As a result, (P3) and its special
version of (P2,) can be solved exactly by the
following procedure called Algorithm 2:

Step 0: Set s= i1 =1; Znin =M.

Step 1: Set up (P2), (P3), and (P4). Let « be the
dual variable associated with the constraint
(19). Find «=«" by solving (P4) using
Algorithm 1 with A = so./ sv;and (21).
Determine the boundary values of
corresponding to the constraints (14) and
(15), w/®, u®, us® and u;®, respectively.
Solve (P3) w1th them and compute the
corresponding optimal solution of (P2,,). If
(P2) is infeasible, set TCI\(a) =

If Zuin > TCEx (@), then let Zoin = TCE( @)
and reset the optimal value of @, ¢} = of
Vi. Repeat Step 1 to Step 3 for every
combinationof (s < S, t< 7).

Step 2:

Step 3:

3. Application to the EOQ Model

For the application of the developed storage capacity
models, we consider a unit-load AS/R system. In the
system all items are assumed to be ordered based on
the standard EOQ inventory model. As the previous
studies (Hausman, Schwarz and Graves, 1976; Lee,
1998, Lee, 1999), we approximate the demand rate by
a discrete geometric probability distribution which is
given by:

d; =Dyfs(i)=Dyp(1—p)" " ' 1 (1=(1—p"),
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=1, n

where D and p are the total demand per period for all
items measured in full pallet loads and the skewness
parameter of the distribution, respectively. In this case,
the inventory level of item 7, X, can be considered to
follow the uniform distribution, 7 (0, ;) where b, =2
EDop(1— p)Y (1~ (1= p)™)IV2

We solved example problems using the following

hypothetical data:

n =100, Dy=10000, £=1, u. = 0.05, 2;=0.1,

» =0.0075, 0.0448, 0.1088, 0.1391, S=9, T=10,

for, i=1, -, 9 =400, 1600, 2200, 2640, 3040,
3400, 3720, 4000, 4240,

0, i=1, -, 10 =0, 400, 600, 800, 1000, 1200,
1400, 1600, 1800, 10000,

soni=1,-,9=2,15,12,1,0.8,06,04,0.2, 0.1,

frioi=1, -, 10 =0, 25, 45, 60, 72.5, 82.5, 90, 97,
100, 107,

R,i=1,-,11=10,2,4,6,8, 10, 12, 14, 16, 20, 40,

sr,i=1, -+, 10 =10,75,5,3.75, 2.5,1.25, 1,08, 0.5,

0.3.

For the purpose of comparison, we consider the rule
of thumb which can be used in practice is to set the
capacity equal to 85% of that required for the FULL

policy with @y=0 (Cormier and Gunn, 1996). The
numbers of different items included in each class for
the CN policy are set to be equal in the example
problems.

The trade-off between warehouse size and system
throughput needs to be analyzed in the earlier stage of
system design. Once the optimal storage capacity is
found, we can compute the expected travel time taken
by a stacker crane to store or retrieve a unit'load in the
system by the slightest modification of the existing
sttistical techniques (Bozer and White, 1984; Hausman
et al., 1976). Then, the throughput of the system is
determined by the reciprocal of the expected travel
time. Here, we present expected travel time figures for
the square-in time AS/R system (Bozer and White,
1984).

The overall results including those obtained by the.
rule of thumb (here, denoted by RAN1) are summarized
in <Tables 1>, <Table 2>. In <Table 1>, g%Ran
denotes the optimal value of « for the RAN policy and
a% j=1, -+, N, that for class j, and CJ, the J<class
based storage policy. All the figures in <Table 2> are
expressed as a relative ratio to the corresponding value
of the RAN policy. Usually, the number of classes is
not greater than 3 in most real applications. Here, we
consider warehouses with up to 5 classes due to our

Table 1. Optimal owned storage capacities and shortage probabilities for different values of p

Storage Capacity Optimal Shortage Probability
?
RAN RANI Cs aRan 3 a’ o3 @y a5
0.0075 1,759.46 | 2,672.25 | 2,044.38 0.02 0.01 0.01 0.01 0.01 0.01
0.0448 1,494.43 | 2,268.86 | 1,091.67 0.04 0.02 0.02 0.02 0.02 0.02
0.1088 1,045.8 | 1,579.21 | 1,150.03 0.1 0.05 0.036 0.013 0.004 0.001
0.1391 933.7 | 1,388.63 | 1,012.69 0.1 0.05 0.04 0.01 0.002 0
Table 2. Owned storage capacity required and expected travel time for different combinations of storage
policy and skewness parameter
p RAN RANI C2 C3 C4 Cs
1.0 1.519 1.063 1.101 1.134 1.162
0.0075 1.0 1232 1.004 1.016 1.028 1.04
0.0448 1.0 1.518 1.027 1.058 1.108 1.132
) 1.0 1.232 0.933 0.908 0.912 0.912
0.1088 1.0 1.510 1.044 1.061 1.077 1.112
’ 1.0 1.229 0.994 0.961 0.936 0.919
0.1391 1.0 1.487 1.039 1.052 1.066 1.085
' 1.0 1.220 1.008 i 0.984 0.961 0.942

* Figures in the upper lines for each combination of 2 and p denote relative ratios of storage capacities to the corresponding value of

RAN and figures in the lower, those of expected travel times.
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interest in the behavior of the CN policy.

The following observations are made from <Table 1>:

1) The storage capacity for RAN1 is much larger
than that for RAN, which indicates that warehouses
designed based on the rule of thumb are signifi-
cantly larger than actually required.

2) In case of C4 and CS, higher shortage probabi-
lities are preferentially assigned to highly frequent
classes due to the nonincreasing function of o,
in (13).

3) As the value of p increases, so does ¢ kan.

From <Table 2>, we observe:

1) The storage capacities obtained for the seven
policies always meet the relationship,

Sran{@) <Sg(a@) <+ <Sg(a) < Sgani (@)

which verifies the intuition in the beginning.

2) The storage capacities required for the class-
based policies are not greatly larger than those
for RAN. The largest % increment from even C5
over the RAN policy is only 16.2% which is
obtained when » = 0.0075. However, in case of
RANI, the % increment increases up to 51.9%.

3) The % increment in storage capacity for class-
based policies over RAN seems to decrease as
the skewness of demand distribution increases.
Particularly for C5, the % increment decreases
from 16.2% to 8.5%.

4) Any improvement in travel time from class-based
policies over RAN may not be expected when the
skewness of demand curve is low, i.e., p= 0.0075.
However, except those cases dramatic throughput
improvements are obtained as the number of
class becomes larger. These observations may give
the system designer a motivation to use the
class-based policies unless the increment in storage
space outweigh the throughput improvement.

4. Conclusions

In this paper, we consider the storage sizing problem
for warehouses under the randomized and class-based
storage policies. The total cost of the problem inciudes
the cost incurred from owning the storage space for
the warehouse and that from contracting space outside
of the company for shortage space. Therefore,
solutions of the problems show a trade-off analysis
between privately owned space and public leased
space. The problem for each of the storage policies has
been formulated as a nonlinear optimization model.
Exact optimal solutions of the model for the RAN
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policy can be easily obtained by taking advantage of
the convexity property for the objective function. An
efficient iterative search procedure is developed to
generate optimal solutions for the CN policy based on
an existing search procedure. The methodology presented
in this paper may contribute to determining optimal
warehouse sizes when outsourcing of storage space is
needed for installing a reasonable supply chain system
of inventories.
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