rh GM-CSF(Leucogen)

The healing effect of rhGM-CSF on uninfected wounds

Seung Kyu Han², Byung Soo Kim¹, Aeree Kim³, Jae Hong Seo¹, Chul Won Choi¹, Sang Won Shin¹, Yeul Hong Kim¹, Woo Kyung Kim², Jun Suk Kim¹

Department of Internal Medicine¹, Plastic Surgery², and Pathology³, School of Medicine, Korea University, Seoul, Korea

Background: rhGM-CSF has been shown to enhance the migration and proliferation of endothelial cells and to promote keratinocyte growth. This study was tried to evaluate the effect of rhGM-CSF dressing on the uninfected wounds. Methods: Thirty Sprague-dawley white mice(250-300g) were selected in this study. The number of wound with the diameter of 5 mm, was 3 in left and 3 in right at the symmetric sites, respectively. The site of rhGM-CSF dressing was decided by a randomization. rhGM-CSF(Leucogen) was diluted in the distilled water(5 µg/mL). The experimental wound group was dressed by 1 mL of distilled water mixed with rhGM-CSF and control wound group was dressed by 1 mL of distilled water. The dressing was done, every 24 hours. The criteria of comparison were the duration of wound healing duration, histologic findings and the bacterial culture of wound sites. Results: The duration of wound healing was 10.3 ± 1.7 days in experimental group and 10.2 ± 2.8 days in control group, without significant difference. There was no specific difference of histologic findings between both groups. The pathogen was not found, at all. Conclusion: It seems to be that rhGM-CSF has no prominent effect on the uninfected wound healing in the mice without immune suppression.

Key Words: rhGM-CSF, uninfected wound healing

가 (dendritic cells) 가 recombinant human 가 (rh) GM-CSF (1-8), rhGM-CSF rhGM-CSF가 , rhGM-CSF 가 136-705, 5가 126-1

: 920-5713, . 926-4534

rhGM-CSF 가 32 E-mail: kbs0309@kumc.or.kr

가 가 1. 가 Sprague-dawley (250-300 30 g) rhGM-CSF dressing 3 6 (Fig 1). penthobarbital sodium (Entobar) 2 mg/100g punch biopsy $5 \, mm$. rhGM-CSF 2. rhGM-CSF rhGM-CSF(Leucogen) $5 \mu g/mL$

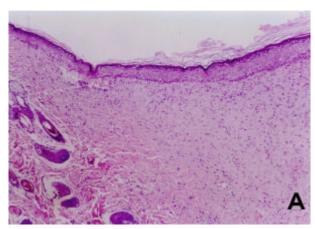
rhGM-CSF(Leucogen) 3 5 μ g/ 4 15 . rhGM-CSF

3

 lmL
 3

 lmL
 .
 3

 7t
 .
 3


Fig. 1. This figure is the gross appearance of a Sprague-dawley white mouse with six punched wounds on the back.

3. 가

가 . 가

rhGM-CSF7\\
2
. 3

rhGM-CSF가

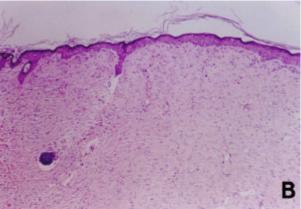


Fig. 2. (A) This figure is the microscopic findings (H&E Stain, X40) of the wounds at 3 days after dressing of the GM-CSF dressed experimental group. (B) This figure is the microscopic findings (H&E Stain, X40) of the wounds at 3 days after dressing of the GM-CSF undressed control group.

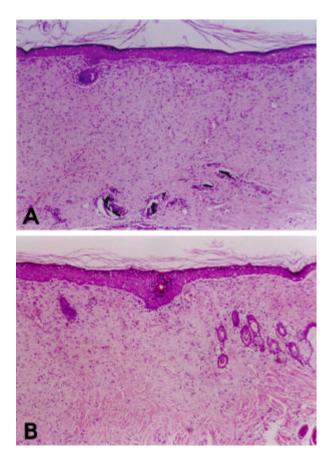


Fig. 3. (A) This figure is the microscopic findings (H&E Stain, X40) of the wounds at 6 days after dressing of the GM-CSF dressed experimental group. (B). This figure is the microscopic findings (H&E Stain, X40) of the wounds at 6 days after dressing of the GM-CSF undressed experimental group.

가 가 10.3±1.7 , 가 10.2±2.8 가 . (Fig. 2, 3).

rhGM-CSF가 가 keratinocyte (1-3),rhGM-CSF 가 keratinocyte (4). rhGM-CSF . Arnold (5) rhGM-CSF 50 2 μg 가 , Marques (6)40 rhGM-CSF 400 µg

> rhGM-CSF 가

rhGM-CSF

hydroxyurea

Grazybowski

(8)

(7)

rhGM-CSF가 가 가 가 가 . . rhGM-CSF 가

Stagno

Pseudomonas
rhGM-CSF7 dressing
dressing
. ,
rhGM-CSF7

가

가 가 punch biopsy rhGM-CSF rhGM-CSF 가 20 10 가 가 rhGM-CSF rhGM-CSF rhGM-CSF 가 가 punch biopsy $5 \mu g/mL$ rhGM-CSF 가 rhGM-CSF 가 가 가 rhGM-CSF(Leucogen) LG

1. Jyung RW, Wu L, Pierce GF, Mustoe TA: Granulocyte-

- macrophage colony-stimulating factor and granulocyte colony-stimulating factor: Differential action on incisional wound healing. Surgery 115;325-334, 1994
- Kucukcelebi A, Carp SS, Hayward PG, Hui P-S, Cowan WT, Ko F, Cooper DM, Robson MC: Granulocytemacrophage colony stimulating factor reverses the inhibition of wound contraction caused by bacterial contamination. Wounds 4;241-246, 1992
- Vyalov S, Desmouliere A, Gabbiani G: GM-CSF-induced granulation tissue formation: Relationships
 between macrophage and myofibroblast accumulation.
 Arch B Cell Pathol 63;231-239, 1993
- Braunstein S, Kaplan G, Gottlieb AB, Schwartz M, Walsh G, Abalos RM, Fajardo TT, Guido LS, Krueger JG: GM-CSF activates regenerative epidermal growth and stimulates keratinocyte proliferation in human skin in vivo. J Invest Dermatol 103:601-605, 1994
- Arnold F, O'Brien J, Cherry G: Granulocyte monocytecolony stimulating factor as an agent for wound healing. J Wound Care 4;400-402, 1995
- Marques da Costa R, Jesus FM, Aniceto C, Mendes M: Double-blinded randomized placebo-controlled trial of the use of granulocyte-macrophage colony-stimulating factor in chronic leg ulcers. Am J Surg 173;165-168, 1997
- 7. Stagno F, Guglielmo P, Consoli U, Fiumara P, Russo M, Giustolisi R: Successful healing of hydroxyurearelated leg ulcers with topical Granulocyte-macrophage colony-stimulating factor. Blood 94;1479-1480, 1999.
- Grzybowski J, Janiak MK, Oidak E, Lasocki K, Jolanta W-W, Cheda A, Malgorzata A-B, Pojda Z: New cytokine dressing . Stimulation of oxidative burst in leukocytes in vitro and reduction of viable bacteria within an infected wound. Int J Pharmacol 184;179-187, 1999