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BOUNDARY CONTROLLABILITY OF SEMILINEAR SYSTEMS IN
BANACH SPACES

K.BALACHANDRAN AND E.R.ANANDHI

Abstract. Sufficient conditions for boundary controllability of semilinear systems
in Banach spaces are established. The results are obtained by using the analytic
semigroup theory and the Banach contraction principle. An example is provided to
illustrate the theory.

1. Introduction

The problem of controllability of semilinear systems in Banach spaces has received
much attention in recent years. Using the fractional power of operators Balachandran
and Dauer[2] studied the controllability problem for semilinear evolution systems in
Banach spaces. Rankin [10] discussed the solutions of a class of semilinear parabolic
differential equations in which the nonlinear operator maps from a fractional power
space into a Banach space. Hagen and Turic [6] studied the same class of equations
by using the semigroup method. The motivation for an abstract theory of these type
occur from the following partial differential equation:

zt(x, t)− zxx(x, t) = β(z(x, t))x,

z(0, t) = z(1, t) = 0, t > 0,

z(x, 0) = a(x), 0 < x < 1.(1)

In general, it is not possible to consider ∂
∂x = A

1
2 , however we will show that for a special

class of operator A there exists a bounded linear operator F such that A
1
2 F = ∂

∂x .
Letting G = Fβ we can fit the equation (1) into the abstract theory developed in [10].

It is interesting to study the controllability of such problems in which the control
is acted through the boundary. But in these approaches we can encounter the diffi-
culty for the existence of sufficiently regular solution to state space system, the control
must be taken in a space of sufficiently smooth functions. Several authors [3,5] have
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discussed the general theory of a boundary control systems. Lasiecka [8] established
the regularity of optimal boundary controls for parabolic equations. Han and Park
[7] studied the boundary controllability of semilinear systems with nonlocal condition.
Balachandran and Anandhi [1] investigated the same problem for integrodifferential
systems in Banach spaces. The purpose of this paper is to derive a set of sufficient
conditions for the boundary controllability of semilinear systems in Banach spaces by
using the Banach fixed point theorem and fractional power of operators.

2. Preliminaries

Let E and U be a pair of real Banach spaces with ‖.‖E and |.|, respectively. Let σ
be a linear closed and densely defined operator with D(σ) ⊆ E and let τ be a linear
operator with D(τ) ⊆ E and R(τ) ⊆ X, a Banach space.

Consider the boundary control semilinear system of the form

ẋ(t) = σx(t) + f(t, x(t)), t ∈ J = [0, b],
τx(t) = B1u(t),
x(0) = x0(2)

where B1 : U → X is a linear continuous operator, the control function u ∈ L1(J, U),
a Banach space of admissible control functions, with U as a Banach space and the
nonlinear operator f : J × E → E is given.
Let A : E → E be the linear operator defined by

D(A) = {x ∈ D(σ) : τx = 0}, Ax = σx, for x ∈ D(A).

Let A be the infinitesimal generator of an analytic semigroup T (t). Then the fractional
power (−A)α can be defined for 0 ≤ α ≤ 1. A−α for 0 < α < 1 is defined by the
integral

A−α =
1

Γ(α)

∫ ∞

0
sα−1T (s)ds,

where Γ(α) denotes the gamma function. (−A)α = (−A−α)−1 exists as a densely
defined closed linear invertible operator with domain D((−A)α) dense in E. The
closedness of (−A)α implies that D((−A)α) endowed with the graph norm |||x||| =
‖x‖E + ‖Aαx‖E is a Banach space. Since (−A)α is invertible its graph norm |||.||| is
equivalent to the norm |x| = ‖Aαx‖E . Thus D(−Aα) equipped with the norm |.| is a
Banach space which we denote by Eα. Also it is clear that 0 < α < β implies Eα ⊃ Eβ

and that the imbedding is continuous.

Let Y be a subspace of E with norm ‖.‖ and Eα ⊆ Y ⊆ E. Let Br = {y ∈ Y :
‖y − x0‖ ≤ r}, for some r > 0. We shall make the following hypotheses:
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(i) D(σ) ⊂ D(τ) and the restriction of τ to D(σ) is continuous relative to graph
norm of D(σ).

(iii) A is the infinitesimal generator of the analytic semigroup T (t), t ≥ 0 and there
exists a constant M > 0 such that ‖T (t)‖ ≤ M and ‖A−αT (t)‖ ≤ Ct−α for
t > 0 and C ≥ 0.

(iv) f : J × Eα → E is continuous and there exists g : J × Eα → Eα such that
f(t, y) = Aαg(t, y) for each y ∈ Eα.

(v) g : J × Y → E and there exists L ≥ 0 such that

‖g(t, v)− g(t, w)‖E ≤ L‖v − w‖
for all v, w ∈ Br and 0 ≤ t ≤ b.

(vi) There exists a linear continuous operator B : U → E such that σB ∈ L(U,E),
τ(Bu) = B1u, for all u ∈ U . Also Bu(t) is continuously differentiable and
‖Bu‖ ≤ q‖B1u‖ for all u ∈ U , where q is a constant.

(vii) For all t ∈ (0, b] and u ∈ U , T (t)Bu ∈ D(A). Moreover, there exists a positive
function ν ∈ L1(0, b) such that ‖AT (t)B‖ ≤ ν(t), a.e. t ∈ (0, b).

Let x(t) be the solution of (1). Then we can define a function z(t) = x(t) − Bu(t)
and from our assumption we see that z(t) ∈ D(A). Hence (1) can be written in terms
of A and B as

ẋ(t) = Az(t) + σBu(t) + Aαg(t, x(t)), t ∈ J,

x(t) = z(t) + Bu(t),
x(0) = x0.(3)

If u is continuously differentiable on [0, b] then z can be defined as a mild solution to
the Cauchy problem

ż(t) = Az(t) + σBu(t)−Bu̇(t) + Aαg(t, x(t)),
z(0) = x0 −Bu(0)

and the solution of (2) is given by

x(t) = T (t)[x0 −Bu(0)] + Bu(t)

+
∫ t

0
T (t− s)[σBu(s)−Bu̇(t) + Aαg(s, x(s))]ds.(4)

Since the differentiability of the control u represents an unrealistic and severe require-
ment, it is necessary to extend the concept of the solution for the general inputs
u ∈ L1(J, U). Integrating (4) by parts, we get

x(t) = T (t)x0 +
∫ t

0
[T (t− s)σ −AT (t− s)]Bu(s)ds

+
∫ t

0
AαT (t− s)g(s, x(s))ds.(5)
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Thus (5) is well defined and it is called a mild solution of the system(2).

Definition: The system (2) is said to be controllable on the interval J if for every
x0, x1 ∈ Y , there exists a control u ∈ L2(J, U) such that the solution x(.) of (2) satis-
fies x(b) = x1.

Further we assume the following conditions:

(viii) There exists a constant K1 > 0 such that
∫ b

0
ν(t)dt ≤ K1.

(ix) The linear operator W from L2(J, U) into E defined by

Wu =
∫ b

0
[T (b− s)σ −AT (b− s)]Bu(s)ds

induces an invertible operator W̃ defined on L2(J, U)/kerW and there exists a
positive constant K2 > 0 such that ‖W̃−1‖ ≤ K2.

(x) Let L∗ =
b(1−α)

1− α
[(bM‖σB‖+ K1)K2 + 1] be such that 0 ≤ L∗ < 1.

(xi) (M + 1)‖x0‖+ [bM‖σB‖+ K1]K2

[
‖x1‖+ M‖x0‖+ (L1r + L2)C

b1−α

1− α

]
.

+ (L1r + L2)C
b1−α

1− α
≤ r

2
.

3. Main Result

Theorem: If the hypotheses (i) - (xii) are satisfied , then the boundary control
semilinear system (2) is controllable on J .

Proof: Using the hypothesis (vi), for an arbitrary function x(.) define the control

u(t) = W̃−1[x1 − T (b)x0 −
∫ b

0
AαT (b− s)g(s, x(s))ds](t).(6)

Let Z = C(J, Y ) be the space endowed with the supremun norm. Define the set

S = {x ∈ Z : x(0) = x0, ‖x(t)− x0‖ ≤ r}.
We shall show that when using the above control the operator F defined by

Fx(t) = T (t)x0 +
∫ t

0
[T (t− s)σ −AT (t− s)]BW̃−1[x1 − T (b)x0

−
∫ b

0
AαT (b− τ)g(τ, x(τ))](s)ds

+
∫ t

0
AαT (t− s)g(s, x(s))ds
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has a fixed point. First we show that F maps S into itself. For x ∈ S,

‖Fx(t)− x0‖ ≤ ‖T (t)x0 − x0‖+ ‖
∫ t

0
[T (t− s)σ −AT (t− s)]BW̃−1[x1 − T (b)x0

−
∫ b

0
AαT (b− τ)g(τ, x(τ))dτ ](s)ds‖+ ‖

∫ t

0
AαT (t− s)g(s, x(s))ds‖

≤ ‖T (t)− I‖‖x0‖+
∫ t

0
‖T (t− s)‖‖σB‖‖W̃−1‖[‖x1‖+ ‖T (b)x0‖

+
∫ b

0
‖AαT (b− τ)‖[‖g(τ, x(τ))− g(τ, x0)‖E + ‖g(τ, 0)‖E ]dτ ]ds

+
∫ t

0
‖AT (t− s)B‖‖W̃−1‖[‖x1‖+ ‖T (b)x0‖

+
∫ b

0
‖AαT (b− τ)‖[‖g(τ, x(τ)− g(τ, x0)‖E + ‖g(τ, x0)‖E ]dτ ]ds

+
∫ t

0
‖AαT (t− s)‖[‖g(s, x(s))− g(s, x0)‖E + ‖g(s, x0)‖E ]ds

≤ (M + 1)‖x0‖+ bM‖σB‖K2[‖x1‖+ M‖x0‖

+ [L1r + L2]C
∫ b

0
(b− s)−αds + KK2[‖x1‖+ M‖x0‖

+ [L1r + L2]C
∫ b

0
(b− s)−αds] + [L1r + L2]C

∫ t

0
(t− s)−αds

≤ (M + 1)‖x0‖+ [bM‖σB‖+ K]K2[‖x1‖+ M‖x0‖

+ (L1r + L2)C
b1−α

1− α
] + (L1r + L2)C

b1−α

1− α
≤ r

Thus F maps S into itself. Now, for x1, x2 ∈ S we have

‖Fx1(t)− Fx2(t)‖ ≤ ‖
∫ t

0
[T (t− s)σ −AT (t− s)]BW̃−1

[
∫ b

0
AαT (b− τ)[g(τ, x1(τ))− g(τ, x2(τ))]dτ ]ds‖

+ ‖
∫ t

0
AαT (t− s)[g(s, x1(s))− g(s, x2(s))]ds‖

≤
∫ t

0
[‖T (t− s)‖‖σB‖+ ‖AT (t− s)B‖]‖W̃−1‖

[
∫ b

0
‖AαT (b− τ)‖‖g(τ, x1(τ))− g(τ, x2(τ))‖Edτ
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+
∫ t

0
‖AαT (t− s)‖‖g(s, x1(s))− g(s, x2(s))‖Eds

≤ [bM‖σB‖+ K]K2L1

∫ b

0
‖AαT (b− s)‖‖x1(τ)− x2(τ)‖dτ

+ L1

∫ t

0
‖AαT (t− s)‖‖x1(s)− x2(s)‖ds

≤ b1−α

1− α
[bM(‖σB‖+ K)K2 + 1]L1 sup

0≤t≤b
‖x1(t)− x2(t)‖

≤ L∗‖x1(t)− x2(t)‖

Therefore, F is a contraction mapping and hence there exists a unique fixed point
x ∈ Y such that Fx(t) = x(t). Any fixed point of F is a mild solution of (1) on J
which satisfies x(b) = x1. Thus the system (2) is controllable on J .

3. Example

Let Ω be a bounded, open connected subset of Rn and let Γ be sufficiently smooth
boundary of Ω. Consider the boundary control system of the form

zt(t, y)− ν∆z(t, y) + (z.∆)z +∇p = 0
divz(t, y) = 0, (t, y) ∈ Q = (0, b)× Ω,

z(t, y) = u(t, y), on Σ = (0, b)× Γ, t ∈ J

z(0, y) = φ(y), y ∈ Ω,(7)

where u ∈ L2(Σ) and φ(y) ∈ L2(Ω).
The above problem can be formulated as a boundary control problem of the form (2)
by suitably choosing the spaces E, X, U as follows:
Let E = L2(Ω) be equipped with the usual norm

‖z‖ = (
∫

Ω
|z(y)|2dy)

1
2

and let Wm,2(Ω) be the Sobolev space of all functions on Ω whose distributional deriva-
tives up through order m are in L2(Ω) with norm given by

‖φ‖m,2 = (
∑

α≤m

‖∂αφ

∂y
‖2)

1
2 .

Take X = H− 1
2 (Γ), U = L2(Γ) and B1 = I, the identity operator and

D(σ) = {z ∈ L2(Ω); ∆z ∈ L2(Ω)}, σ = ν∆.
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The operator τ is the ”trace” operator such that τz = z|Γ is well defined and belongs
to H− 1

2 (Γ) for each z ∈ D(σ). (see[4]). Define E2 = (L2(Ω))n and let the function
z(t, y) = (z1(t, y), . . . , zn(t, y)).
Set

Z2 = Closure of {φ ∈ (C0(Ω))n, divφ(y) = 0} in E2

and
Jp = {∇p; p ∈ W 1,2(Ω)}.

Then we have the well known decomposition E2 = Z2 ⊕ Jp. Let P be continuous
projection from E2 to Z2 and let ∆ be the Laplace operator with

D(∆) = {φ ∈ (H2(Ω))n : φ(y) = 0, y ∈ ∂Ω}.
Define A = −Pν∆ with domain D(A) = Z2 ∩D(∆). Then it is known that −A is a
closed densely defined linear operator in Z2 with a bounded inverse and generates a
bounded analytic semigroup T (t) in Z2.
Define the linear operator B : L2(Γ) → L2(Ω) by Bu = wu where wu is the unique
solution to the Dirichlet boundary value problem,

∆wu = 0 in Ω,

wu = u in Γ.

In other words (see [9])
∫

Ω
wu∆ψdx =

∫

Γ
u

∂ψ

∂n
dx, for all ψ ∈ H1

0 (Ω) ∪H2(Ω),(8)

where ∂ψ
∂n denotes the outward normal derivative of ψ which is well defined as an ele-

ment of H
1
2 (Γ). ¿From (8), it follows that,

‖wu‖L2(Ω) ≤ C1‖u‖
H− 1

2 (Γ)
, for all u ∈ H− 1

2 (Γ)

and

‖wu‖H1(Ω) ≤ C2‖u‖
H

1
2 (Γ)

, for all u ∈ H
1
2 (Γ),

where Ci, i = 1, 2 are positive constants independent of u.
From the above estimates it follows by an interpolation argument [11] that

‖AT (t)B‖L(L2(Γ),L2(Γ)) ≤ Ct−
3
4 , for all t > 0 with ν(t) = Ct−

3
4 .

Applying the projection P to (7), we find that (2) is an abstract formulation of (7)
where f is defined on D(A

1
2 ) = W0

1,2((Ω))n ∩ E2 with range in E2 by

f(φ(y)) = P
n∑

k=1

(
∂φk(y)φ1(y)

∂yk
, . . . ,

∂φk(y)φn(y)
∂yk

).
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It is clear from a known result [14] that there exists a bounded linear operator Bk :
E2 → X2 such that P ∂

∂yk
= A

1
2 Bk and also the mapping

g(φ(y)) =
n∑

k=1

Bk(φk(x)φ1(x), . . . , φk(x)φn(x))

is locally Lipschitz. Further assume that the bounded invertible operator W̃ exists.
Choose b and other constants such that the conditions (x) and (xi) are satisfied. Hence,
we see that all the conditions stated in the theorem are satisfied and so the system (7)
is controllable on [0, b].
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