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A GENERALIZATION OF OSTROWSKI INTEGRAL INEQUALITY
FOR MAPPINGS WHOSE DERIVATIVES BELONG TO L,, AND
APPLICATIONS IN NUMERICAL INTEGRATION

SEVER SILVESTRU DRAGOMIR

ABSTRACT. A generalization of Ostrowski integral inequality for mappings whose
derivatives are bounded and applications for general quadrature formulae are given.

1. INTRODUCTION

The following theorem contains the integral inequality which is known in the litera-
ture as Ostrowski’s inequality [2, p. 469].

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose derivative
is bounded on (a,b) and denote ||f'|lcc = supPse(ap) [f'(t)| < 0o. Then for all x € [a,b],
we have the inequality

1, (e—f

v — apb)?
1 + (b_a)gl (0 —a)[l f'lloo-

b
i [ roal <

The constant i 1 sharp in the sense that it can not be replaced by a smaller one.

(1) 1) -

In [1], S.S. Dragomir and S. Wang applied Ostrowski’s inequality in Numerical Inte-
gration as follows.

Let I, ta =29 <21 < ... < Tp_1 < xp, = b be a division of the interval [a,b] and
& € [wiywiv1] (i =0,...,n — 1) a sequence of intermediate points for I,,. Construct the
Riemann sums

n—1
Ro(f,1n,6) = f(&)hi
i=0
where h; := ;11 — ;.
We have the following quadrature formula [1].
in this section we have the letter ambitious sorry the nine to the nine ambitious sorry
the letter in this section we have the letter so that can be ambitious
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Theorem 2. Let f : [a,b] — R be as in Theorem 1 and I,,&; (i =0,....,n — 1) be as
above. Then we have the Riemann quadrature formula

b
(1.2) /fmmzmmma+mmm@

where the remainder satisfies the estimation

1 n—l n-! xr; + x; 2
(1.3) mﬁ@@!ﬁﬁwuZ@kuZGFZzwﬂ
1=0

=0
1 n—1
< LY #
=0

forall&; (i=0,....,n—1) as above. The constant % is sharp in (1.8).
Remark 1. [t is obvious that the best inequality we can get from Theorem 2 is the one

for which &; = % (1=0,...n—1) obtaining:

b
/f@szuﬂm+w0mm

where My, (f, I,) is the midpiont quadrature rule, i.e.,
M, (f,I ):nz:lh'f (W>
e i=0 l 2
and the remainder V,, (f, I,,) satisfies the estimate

1 n—1
Va (o)l < 5 711 32
=0

In this paper we point out in the main another inequality generalising Ostrowski’s
result (1.1) for k—points x1,...,xy for which the upper bound (see (2.1)) is similar to
the bound (1.3). Note that the best inequality we can get from (2.1) is the trapezoid
inequality (2.6). Applications for general quadrature formulae (see Theorem 4) and for
certain particualr cases (see Section 4 and Section 5) are also given.

2. SOME INTEGRAL INEQUALITIES

We start with the following result.

Theorem 3. Let I, :a=x9 < 21 < ... < Tp_1 < x = b be a division of the interval
[a,b], a; (i=0,....k+1) be “k+ 2" points so that oy = a,o; € [xi—1,2;] (i =1,..., k)
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and oy = b. If f : [a,b] — R is absolutely continuous on [a,b], then we have the
mequality:

b k
@2.1) [ @dn =Y (@i - e f @)
a i=0
1]{*1 k—1 $1+1:1 2 ,
< [1e 3 (o - )
=0 1=0
1 = 1
< SlIF1 o n <5 0=a) |l v r)
1=0

where h; == xi41 —x; (1 =0,...,k—1) and v(h) := max{h; |i=0,...,k—1}. The
constant % i the first inequality and the constant % i the second and third inequality
are the best possible.

Proof. Define the mapping K : [a,b] — R given by

t—ai, t€la,z)
t—ao, T € [1'171'2)

t—ap_1, t €[z 2,28 1)
t—ag, tE [.%'kfl,b]
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Integrating by parts, we have successively:

k=l e kol pmip
[woroa=y [T kosoa=3 [ -ansou
i=0 v T i=0 Y Ti

k-1 Ti+1
t—a; S d
2 {< ) fO) ], / £ t]
k—1
[(cviyr — i) f () + (Tig1 — ig1) f (@i / f
=0
k—1 k—2
(1 —a) F (@) + 3 (s —20) f (@) + > (i1 — aign) f (2i41)
=1 =0
b
+<b—ak>f<b>—/ f(tydt
k—la k—1
(1 - ) F @)+ (i —ai) f @)+ 3 (@ — i) f (1)
i=1 =1
b
+<b—ak>f<b>—/ £ty dt
k—1 b
(o1 —a) F (@) + 3 (aigs — i) f () + (b—an) £ (0) — [ F(t)at
=1 a

k b
> (i —a)f @) - [ F o
i=0 a

and then we have the integral equality:

(2.2)

/f aH_l—aZ (z4) /K

On the other hand, we have

(2.3)

/bK ) f (t) dt’
kil Ti41

(t) dt

k-1 Ti+1
=3 IOIIACI
i=0 v ¥i
k=1l ez k=1l ez
= S [T tamllf O£ [ - avalae
i= i=0 7 Fi

=0 T
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A simple calculation shows that

Tit1
(24) / ’t — ai+1’ dt
x;
Qg1 Tit1
= / (ai+1 — t) dt + / (t — Oéi+1) dt
T; Qi1
1 1 Ti+ T\
= 3 [($i+1 — 1)’ + (g1 — l‘z’)g} = Zh? + (ai+1 - 122+1>

forallt=0,....k — 1.
Now, by (2.2) — (2.4) we get the first inequality in (2.1).
Assume that the first inequality in (2.1) holds for a constant ¢ > 0, i.e.,
Z (i1 — i) f ()

/:f(w)dw— >

k— k—1 i+ Tip 2 /
S Y (o= ) )
R, f

(2.5)

=0 1=0

If we choose f : [a,b] — )=z, a0 =a, a; =b, xg = a, x1 = b in (2.5) we obtain

(v
b— ) (b—a)?
4

from where we get ¢ > Z and the sharpness of the constant i is proved.

<ec(b—a)*+

The last two inequalities as well as the sharpness of the constant % are obvious and
we omit the details. 1

Now, if we assume that the points of the division Iy, are given, then the best inequality
we can get from Theorem 3 is embodied in the following corollary:

Corollary 1. Let f, I}, be as above. Then we have the inequality

(2.6)

2

1 —
FI71 3
1=0
The constant i 1s the best possible one.

Proof. We choose in Theorem 3 :

a—+ x Tr—9o + Tk—1 Tp_1+b
B = —— (o, Q= ————
2 2 2

) k-1
2 [(fm —a) +Z Tip1 —xi1) f(z) + (b—xk—l)f(b)”
=1

ap = a,01 = Qg1 = b.
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In this case
k
> (i — i) f (22)
i=0

- (vto —a)f(a)+ (‘“;"’32 —a—;m)f(a:l)—k...

+ (x’“‘;+ b ke ;x’“*) f (@) + (b - Tl b) 1)

k=1
= % [(931 —a)f(a)+ Y (@i — @) f(w) + (b—zp1) f (b)]
i=1

and then (2.6) is obvious by (2.1). &

The case of equidistant partitioning is important in practice.

Corollary 2. Let I, : z; = a—{—ib_T“ (i=0,...,k) be an equidistant partitioning of [a,b] .
If f is as above, then we have the inequality

1 + f(b kzl a—i—zb
a)?[|.f[lso-

<
- 4k(
The constant % 1s the best possible one.

Remark 2. If k =1, we have the inequality

RYR(OLJ U 1

(2.8) (b—a)| < (b= a)?[lf' o

W

Choose f :[a,b] = R, f(x) = ‘:L‘ - “T'H" which is L-lipschitzian with L =1 and

-1 if te [ a+b)
fl(@) =
1 if te (420
Then || f']lcoc =1 and

—a)?
/f YO (UL PR et

and the equality is obtained in (2.8) showing that the constant i is sharp.
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3. THE CONVERGENCE OF A GENERAL QUADRATURE FORMULA
Let A, :a = xén) < :Egn) <. < asgl )1 <z =bbea sequence of divisions of [a, b]
and consider the sequence of numerlcal 1ntegrat1on formulae

Ln(f, Ap,w™ Zw (™)

where w( )( j=0,...,n) are the quadrature weights.

The following theorem contains a sufficient condition for the weights w](-n) so that

L.(f, An,w™) approximates the integral f; f(z)dx
Theorem 4. Let f : [a,b] — R be an absolutely continuous mapping on [a,b]. If the

quadrature weights w( )(] =0,...,n) satisfy the condition wj(-") =b—a and
j=0

(3.1) i —a<Zw <m+1—af0rall1—0 n—1;

then we have the estimation

b
(3.2) Lo(f Ay ™) / f(2)da

ORE

1n71 ) 9 n—1 7 ") xz(n)+mi+1 /
< R ) e o S
1= 1= =
1 - 1
< 1 e SR < 27 b — a(h)

=0
where v(h™) := max{hz(n) 21 =20,...,n—1} and hg - mgi)l gn)_ Particularly, if
[l f'loc < 00, then

lim I(f,An,w /f

v(h(M)—0
uniformly by rapport of the weights w™.

Proof. Define the sequence of real numbers:

Note that
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By the assumption (3.1) we have az@l € [xz(n), §+)1] for all i = 0,...,n — 1. Define
(n)

oy = a and compute

and

Consequently,

;(am —a”) («”) = wa 7 () = 1 (£ Apwt™).
Applying the inequality (2.1) we get the estimation (3.2). .

The uniform convergence by rapport of quadrature weights w;
last inequality. N

is obvious by the

The case when the partitioning is equidistant is important in practice. Consider then
the partitioning

n b_
Ey:a™i=a+i-——2 (i=0,..,n)
n

and define the sequence of numerical quadrature formulae

(fw")> Zw <a+z _a>.

The following result holds:

Corollary 3. Let f : [a,b] — R be absolutely continuous on |a,b]. If the quadrature
(n)

weights w; satisfy the condition:

1 : (m)y _t+1,.
_aij < p (t=0,...,n—1);

— /ab f(z)dzx

1 g %+1 b—a
< 1o ,b—a a)® + w" 5
=0 | j=

i
— <
n

then we have the estimation

[e=]

IN

1 ! 2
57 b — )%
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Particularly, if || f'|lcc < 00, then

b
Jim L) = [ fa)ds

uniformly by rapport of w™.

4. SOME PARTICULAR INTEGRAL INEQUALITIES

In this section we point out some particular inequalities which generalize some clas-
sical results such as : rectangle inequality, trapezoid inequality, Ostrowski’s inequality,
midpoint inequality, Simpson’s inequality and others.

Proposition 1. Let f : [a,b] — R be absolutely continuous on [a,b] and o € [a,D].
Then we have the inequality:

(4.1)

/ Fa)dz a—a)f(a)+(b—a)f(b)]‘

[4(b—a)2+ (a a;b>

The constant i s the best possible one.

1
1Flloo < 50 = @)1 f'lloc-

Proof. Follows from Theorem 3 by choosing xo = a, 21 = b,a9 = a,a; = « € [a, ] and
as =0 1

Remark 3. a) If in (4.1) we put o = b, we get the “left rectangle inequality”:

(4.2) (b= a)?[lf"loo-

N | —

b
/ f(@)dz — (b—a)f(a)| <

b) If « = a, then by (4.1) we get the “right rectangle inequality”

b
43 [ @i = - 010 < j0 - 211

c). It is clear that the best estimation we can have in (4.1) is for a = %50 getting the
“trapezoid inequality”

(4.4) f iz~ MO o) < 16— a2 ).

(b—a)

Another particular integral inequality with many applications is the following one:

Proposition 2. Let f : [a,b] — R be an absolutely continuous mapping on [a,b] and
a<xz1<ba<a <z <ay<b Then we have the inequality:
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/abf(x)dx = l(oa —a)f(@) + (02 = @) f (1) + (b — a2) ()]
é(b—a)Q—i-% <x1 B a-2|-b>2
) o)

Proof. Consider the division a = zg < z1 < 22 = b and the numbers ag = a,a1 €
la, z1], a2 € [x1,b], a3 = b. Applying Theorem 3 for these particular choices, we get

1 lloo-

b
f(@)dr — [(e1 —a) f (a) + (a2 — a1) f(z1) + (b — a2) f (b)]
2
% [(xl —a)?+(b— x1)2] + <a1 _ —;$1>
2
+ (Oég — xl; b>
As a simple computation shows that

%[(xl—a)u(b—xl)ﬂ N (xl—“b)Q

(4.6)

<

£ lloo-

then we get the desired inequality (4.5). &
Corollary 4. Let f be as above and x1 € |a,b]. Then we have Ostrowski’s inequality:

_atbd

(4.7) ;

b
[ 1@z =6~ i) >2] 1o

Proof. Indeed, if we put a; = a, a2 = b in the second part of the right membership of
(4.5), we get
a+x )’ N z1+ b\’
a1 — g —
! 2 2T
a+x\° a1 +0\? 1 2 2
= <a 5 ) +<b 5 ) :1[(:131760 +(b—x1)
1 , 1 a+b\>
= —(b— - — .
g0-a) +3 (xl 2 )

Now, using (4.5), we get (4.7). &

< |j-aP+ (@
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Remark 4. If we choose v1 = “TH’ in (4.7), we get the “midpoint inequality”

/ab flx)dz — (b—a)f (a -; b) ‘ <o D2l

(4.8) <3

The following corollary generalizing Simpson’s inequality holds:

5‘1T+b, %‘E’b] . Then we have the inequality

/abf(x)dx - b;a [f(a) + /(b)) +2f(x1)H

Corollary 5. Let f be as above and x1 € [

(4.9) :

5 ) a+b\>
< — — —
< [36(b a) —l—(acl 2 >

Proof. Indeed, if we put in the second membership of (4.5) oy = 5“6+ by = 938 we

6
get
1 1 b\?
I :(b—a)2+<x1—a+>

1 llsc-

8 2 2

n 5a+b_a+x1 2+ a+5b_z1+b 2
6 2 6 2 '

Let us observe that

S5a+b a+x b+2a 1
6 2 6 2"
a+5 w+b a+2b 1
6 2 6 2
and then
5a+b a+x1 2 a -+ 5b :1:1—|—b2
(- ()
b+2 1 \° [a+20 1 \?
- < 6 —2:):1) +< 6 _2:’31)
1 fa+20 b+2a\’ 1 1(b+2a  a+2b\\
-2 6_6> <2x1_2<6+6>>
1 —a)? 1 a+b\>
2 36 +2<x1_ 2 )
and then
1 1 a+b\? 1(b-a)? 1 a+b\>
I = 8(b—a)2+2(x1— 2 ) +2(36)+2<9§1— 9 >

= Dh-a2+ <x1—a+b>2



128 SEVER SILVESTRU DRAGOMIR

and the inequality (4.9) is proved. i

Remark 5. Let observe that the best estimation we can get from (4.9) is that one for

which x1 = ‘ZTH’, obtaining the “Simpson’s inequality”
b
b— b b 5
) | [ s 5 IO o (SR 20— 2l
a 3 2 2 36

The following corollary also holds

Corollary 6. Let f be as above and a < a1 < “TH’ < a9 < b. Then we have the
mequality

a+b

aw [  flaydr - (@1 = (@) + (o = o) (457 ) + (0= ) )] ]

2 2
< [;<b—a>2+ (o0 = 252) s (- 222 ] 1ee-

The proof is obvious by Proposition 2 by choosing x1 = “T"'b.

Remark 6. The best estimation we can obtain from (4.11) is that one for which aq =

3aT+b and qg = %?’b obtaining the inequality
b
b—a [f(a)+ f(b a+b 1
R I L ol e ek G | B O T

The following proposition generalizes the “three-eights rule” of Newton-Cotes:

Proposition 3. Let f be as above and a < x1 < x9 < b and aq € [a, 1], ag € [x1, 22],
ag € [x2,b]. Then we have the inequality

b
(4.13) / f(@)dz — ((on — a) f(a) + (a2 — a1) (1)

T (a5 — an) flas) + (b as)f(b))‘

< [i [(371 — a)2 + (zg — wl)z +(b— 952)2]

2 2 2
a+x T+ To+ b
e R e R ey

The proof is obvious by Theorem 3.
The next corollary contains a generalization of the “three-eights rule” of Newton-
Cotes in the following way:

1 lloo-
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Corollary 7. Let f be as above and a < a1 < 2“T+b < ag < 26;‘“ < ag <b. Then we

have the inequality:
b
[ s {(al — @)f(a) + (a2 — ) (2“ - b)

(4.14) ;

Haa = anf (“52) + 0= an s

(b—a)2+ .. Batb 2
12 ! 6

a+b\> a+50\%]

The proof follows by the above proposition by choosing x1 = 2“—“’ and zo = %21’.

8 2
the “three-eights rule” of Newton-Cotes

a2 [f(a) +3f (2“; b) T 3f <“§2b> ¥ f(b)] ‘

< 288( )1 flloo-

Remark 7. a) If we choose oy = 2212 oy = 948 and a3 = %71’ in (4.14), then we get

(4.15)

b) The best estimation we can get from (4.14) is that one for which oy = 5a+b, g = b
Qg = “%Sb obtaining the inequality

5 @ (240 var (“52) 450

(4.16)

<
< 12( aPllf -
5. SOME COMPOSITE QUADRATURE FORMULAE

Let us consider the partitioning of the interval [a,b] given by A, : a = 29 < 21 <
W < Tp—1 <xp=band put h; :=z;41 —x;(i=0,...,n—1).
The following theorem holds:

Theorem 5. Let f : [a,b] — R be absolutely continuous on [a,b] and k > 1. Then we
have the composite quadrature formula

b
(5.1) / F(2)de = Ap(Dn, f) + Bi(An, ).
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where
1 o, (k= ) + i
52 M f)= g T+ Y p (BRI,
=0 j=1

and

=
(5.3) T(Ap, f) = B [f (@) + f (@iv1)] b

i=0

1s the trapezoid quadrature formula.
The remainder Ry(An, f) satisfies the estimation

(5.4) BB P < 7217l Zh2

Proof. Applying Corollary 2 on the intervals [z;, z;+1] (i = 0,...,n — 1) we get

Titt 1 f( Z)+f A hk - z+ 7
[ stayta - | L et S @( et o)

2

i

< 7h2 ! -
< R

Summing over ¢ from 0 to n — 1 and using the generalized triangle inequality, we get
the desired estimation (5.4).

The following corollary holds:

Corollary 8. Let f,A,, be as above. Then we have the quadrature formula

/ fl T (A, f) + M(Dn, )] + Ro(An, 1),

where M (A, f) is the midpoint rule, we recall,

An;f Zf (xz +5L‘z+1>

The remainder satisfies the estimation:

n—1
(55) Ra(Aus )] < g1 oo S 12
=0

The following corollary also holds:
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Corollary 9. Let f,A,, be as above. Then we have the quadrature formula

b n—1 ‘ '
(5.6) [i@a = |rann+ Yy f<2f'f+3x+1> "
¢ 1=0

nd T + 2w
% i+
——— | hi| + R3 (A, f).
+§f( ; ) + Ry (A, )
The remainder R3(A,, f) satisfies the estimation:

The following theorem also holds:

Theorem 6. Let f and A,, be as above. Suppose that &; € [z, xitv1] (1 =0,...,n—1).
Then we have the formula

,_.

(5-8) /f [(5 —zi) f (i) + (@i1 — &) f (wir1)] + R(E,, An, f).

1=

The remainder R(&, A, f) satisfies the estimation:

(5.9) [R(&, A, f)] < [ Zhﬂz(sz ‘“”M)]Hf’\oo
1 / 2
< 5ufHothi.
1=0

Proof. Apply Proposition 1 on the intervals [z;, x;41](i = 0,...,n — 1) to get

O

[ oo - 16~ 5@ + @i - €7

1 Ti+ Tit1 2 1
Eh? + (Q’ - 2+) ] 1/ loo < S 11 llooh.

Summing over ¢ from 0 to n — 1 and using the generalized triangle inequality we deduce
the desired estimation (5.9). I

<

Corollary 10. Let f and A, be as above. Then we have
1) the “left rectangle rule”:

b n—1
(5.10) [ H@de = F @ hit BB, )
a =0
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2) the “right rectangle rule”:

(.11 [ 100t =3 1y hes B3 0)
3) the “trapezoid rule”: B
(5.12) /bf (x)dx =T (An, f) + Rr (Ag, f)
where '

BB L s () < 171 502
and o

n—1
1
IRy (A, )] < <M1 o0 YB3
=0

The following theorem also holds.

Theorem 7. Let f and A, be as above. If x; < az(l) <¢, < a£2) <xigy1 (1=0,...,n—1),
then we have the formula:

(5.13) /ab f(z)dx
S (o ) () + 5 (ol =) £ (&)
=0 1=0

n—1
+ Z (xi-i-l - @52)) f (xi-‘rl) + R (E? a(l)a 0(2), ATM f> )
i=0
where the remainder satisfies the estimation

(5.14) (R (g,a“),a(?),An,f)]

n—1 n—1

1 1 Ti 4 T\
z h2 4 = S e
MR N O

=0

n—1 2
+Z<a§1)_$z+£z> +Z< 2) €z+$z+l> ] ||f/”oo

1=0

<

The proof follows from Proposition 2 applied on the intervals [z;, x; 1] (i = 0,...,n — 1).
The following corollary of the above theorem also holds
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Corollary 11. Let f, A, be as above and §; € [z;,xiy1] (i =0,...,n—1). Then we
have the formula of Riemann type:

b n—1
(5.15) [ e =Y 1 (€ bt (6D 6.
a i=0

The remainder Rg (&, Ay, f) satisfies the estimation
(5.16) |Rp (5 A, f)]

n—1
Zh2 + Z (& - “”“) ] 7o < 31700 3 12
=0

Remark 8. If we choose in (5.15), §; = #, then we get the midpoint quadrature
formula

b
/f(x)daszM(An,f>+RM<An,f>,

where

n—1
1
[Rar (A, )] < 51 oo YB3
7=0

The following corollary also holds

Corollary 12. Let f, A, be as above and &; € {5%2““, xﬁ%““] (t=0,...,n—1).
Then we have the formula

n—1 n—1

s [ = G )+ S Gt 5 376 b s (6
=0
The remainder Rg (&, Ay, f) satisfies the estimation:

(5:18)  |Rs (€A )] [36271”2(@ ””””1) ] | £l

Remark 9. If we choose above &; = %A (i1=0,....,n—1) then we get

(5.19) / f(x

Z (i) + f (wis) i + 5 Zf(ngm)hﬁ-RS(An,f),

where the Temamder satisfies the estimation

(520) RS (B, )] < 221 Hoozfﬁ
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The following corollary also holds.

Corollary 13. Let f, A, be as above and x; < ozl(l) < % < 042(2) <xig1 (1=0,..,n—1).
Then we have the formula

(5.21) [ 1@
= S oV x 5~ a? ) <$1+$z+1)
ZZ;(Z Z)f(l)+iz;(’ )f 5

The remainder satisfies the estimation:

‘RB (au)’ a? A, f)‘

3w —|— x 2 x; + 3x; 2
2 i i+1 (2) i i+1 /
82m+2( ) 3 (o - )

=0

—_

<

Finally, the following theorem holds:

Theorem 8. Let f, A, be as above and x; < fgl) < 61(2) < iy and 041(»1) € [azi,fgl)],

042(2) € [551),51(-2)} and al(g) € [552),@41} fori=0,...,n—1. Then we have the formula:

(5.22) / f@
n—1
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and the remainder satisfies the estimation

‘R (5(1)7 5(2)7 a(l), a(2)7 a(3)7 A, f)‘

n—1 n—1 n—1
< g fi”>2+z<wi+l—f§”>2]

i=0 i=0

5 (o zers? )2+z(a e

=0

n—1

+ (a?)gi *f"“) 17 oo

=0

The proof follows from Theorem 3. We shall omit the details.

Remark 10. We note only that if we choose

1) Tix1t 7T (2) T+ Tt

ai 8 bt} - 2 I
(3) X+ TTit1 2x; + xip1
e s A

and
@) T+ 2T
& =5 =
then we get the “three-eights formula” of Newton-Cotes:

b A , , .
[ s — Z[ )+ 37 (2EE0) o (SR 4 )|

+RN—C (Ana f) )

where the remainder satisfies the estimation

0,...,n—2)

|IRn—c (An, f)] < 288”f Hooz h2.
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