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SUMS AND JOINS OF FUZZY FINITE STATE MACHINES

SUNG-JIN CHO

Abstract: We introduce sums and joins of fuzzy finite state machines and investi-
gate their algebraic structures.

1. INTRODUCTION

Since Wee [9] in 1967 introduced the concept of fuzzy automata following Zadeh [10],
fuzzy automata theory has been developed by many researchers. Recently Malik et al.
[5-8] introduced the concepts of fuzzy finite state machines and fuzzy transformation
semigroups based on Wee’s concept [9] of fuzzy automata and related concepts and
applied algebraic technique. Cho et al. [2,4] introduced the notion of a T-fuzzy finite
state machine that is an extension of a fuzzy finite state machine. Even if T' = A, our
notion is different from the notion of Malik et al. [6,7]. In this paper, we introduce
sums and joins of fuzzy finite state machines that are generalizations of crisp concepts
in algebraic automata theory and investigate their algebraic structures.

For the terminology in (crisp) algebraic automata theory, we refer to [3].

2. PRELIMINARIES

Definition 2.1 [1,4]. A triple M = (Q, X, 7) where Q and X are finite nonempty
sets and T is a fuzzy subset of Q@ X X X Q, i.e., T is a function from Q x X x Q to [0,1],
is called a fuzzy finite state machine if quQ T(p,a,q) <1 forallp € Q and a € X.
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Definition 2.2 [4]. Let My = (Q1,X1,71) and My = (Q2, X2, 72) be fuzzy finite
state machines. Let o : Q1 — Q2 and B : X1 — X5 be mappings. Then the pair
(a, B) is called a fuzzy finite state machine homomorphism (which is written by (o, 3))
if
Tl(p¢a7q) < ’7’2(0&(]9>,,8(a),06(q>),p,q €Qr,ae Xy
The homomorphism (o, 3) : My — Ma is called isomorphism if « and 3 are
bijective respectively.

Definition 2.3 [1,4]. Let M; = (Q1,X1,71) and My = (Q2, X2, 72) be fuzzy finite
state machines. If & : X1 — X5 is a function and n : Q2 — Q1 is a surjective partial
function such that m1(n(p),a,n(q)) < m=2(p,&(a),q) for all p,q in the domain of n and
a € X1, then we say that (n,§) is a covering of My by My and that My covers My
and denote by My < My. Moreover, if the inequality always turns out equality, then
we say that (n,&) is a complete covering of My by Ma and that My completely covers
M and denote by M1 <. Ma.

Example 2.4. Let M = (Q, X, 7) be a fuzzy finite state machine. Define an equiv-
alence relation ~ on X by a ~ b if and only if 7(p,a,q) = 7(p,b,q) for all p,q € Q.
Construct a fuzzy finite state machine My = (Q, X/ ~,7~) by defining 7~ (p, [a],q) =
T(p,a,q). Now define & : X — X/ ~ by &(a) = [a] and n = 1g. Then (n,€) is a
complete covering of M by My clearly.

Proposition 2.5. Let M1, My and M3 be fuzzy finite state machines. If M1 < Mo
[resp. M1 SC Mz] and ./\/lg S Mg [Mz SC Mg/, then Ml S Mg /Ml SC ./\/13/

Proof. 1t is straightforward.

3. SEVERAL PRODUCTS OF FUZZY FINITE STATE MACHINES

Several products of finite state machines are in [3]. Some of these products have
been fuzzified in [1], [4] and [6]. In this section we introduce sums and joins of fuzzy
finite state machines.

Definition 3.1 [1,6]. Let M; = (Q1,X1,71) and My = (Q2, X2, 72) be fuzzy finite
state machines. The cascade product MiwMsy of My and Msy with respect to w :
Q2 x X9 — X7 is the fuzzy finite state machine (Q1 X Q2, Xo, iwTs) with

(TiwT2)((p1,02), b, (q1,¢2)) = A(T1(P1,w(P2,b), q1), T2(P2, b, 42))-



SUMS AND JOINS OF FUZZY FINITE STATE MACHINES 55

Definition 3.2 [1,6]. Let My = (Q1,X1,71) and My = (Q2, X2, 72) be fuzzy finite
state machines. The wreath product My o Ms of My and My is the fuzzy finite state
machine (Q1 X Qg,XlQ2 X Xo9,7T1 0T9) with

(110 72)((p1,p2), (f, 1), (q1,42)) = A(Ti(p1, f(p2), q1), T2(p2. b, q2)).

Now we introduce sums and joins of fuzzy finite state machines.

Definition 3.3. Let M; = (Q1,X1,71) and Ma = (Q2, X2, 72) be fuzzy finite state
machines, where Q1 N Q2 = 0 and X1 N Xy = (0. The join M1V My of M1 and Ms
is the fuzzy finite state machine (Q1 U Q2, X1 U Xo, 71 V T2) with

T1(p, a,q) if (p,a,q) € Q1 X X1 X Q1
(Tl \/7—2)(p7 a, Q) = 7—2(p7 a, Q) Zf (p7 a, Q) € QQ X X2 X Q2
0, otherwise

Definition 3.4. Let M; = (Q1, X1,71) and Ma = (Q2, X2, T2) be fuzzy finite state
machines, where Q1 NQy = 0 and X1 N Xy = 0. The join* M1 V* My of M1 and M
is the fuzzy finite state machine (Q1 U Q2, X1 U Xo, 71 V* T2) with

T1(p,a,q) if (p,a,q) € Q1 x X1 x Q1
7—2(p7a7Q) Zf (pa a, Q) € QZ X X2 X Q2
1 zf(p,a,q) S (Ql X X1 X QQ) U (Q2 X Xo X Ql)

0, otherwise

(7-1 v 7-2)([), a, Q) =

Definition 3.5. Let M; = (Q1,X1,71) and Ma = (Q2, X2, 2) be fuzzy finite state
machines, where Q1 N Qa2 = (. The sum M1+ My of M1 and My is the fuzzy finite
state machine (Q1 U Q2, X1 X Xo, 71 + 7o) with

T1(p,a,q) if p,q € Q1
(11 +72)(p, (a,0),q) = 72(p,b,q) if p,q € Q2
0, otherwise

4. ASSOCIATIVE PROPERTIES

The following proposition is in [4].
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Proposition 4.1. Let M1, My and Mgz be fuzzy finite state machines. Then the
following are hold:

(i) (M1 A M) A Mg = Mi A (Mg AMs).

(ii) (M1 X MQ) X M3 =M x (M2 X Mg)

Now we prove that wreath product, join and sum of fuzzy finite state machines are
associative.

Theorem 4.2. Let My = (Q1,X1,71), Ma = (Q2,X2,72) and M3 = (Q3, X3,73) be
fuzzy finite state machines. Then the following are hold:

(i) (M1 0 Ma) o M3 = M o (MsoMs)

(’l’l) (M1VM2)VM3 = Ml\/(Mg\/Mg), where QlﬂngQg = @ and XlﬂXgﬂXg =

(iii) (Ml +M2) + M3 = My + (Mg +M3), where Q1 N Q2N Q3 = 0
Proof. (i) Let o : (Q1 X Q2) X Q3 — Q1 X (Q2 X Q3) be the natural mapping. Then «
is a bijective mapping. Let ¢; : XIQQ X Xg — X1Q2 and go : XlQ2 X X3 — X5 be the
natural projection mappings. Define a mapping f : Q3 — Xle X Xo by f(p3) = (s,b2)
and let f; = g1of and fo = goof. Define 3 : (XlQ2 X X5)93 x X3 — XIQ?XQ?’ X (XQQS X
X3) by B((f,b3)) = (h, (f2,b3)), where h: Q2 X Q3 — X1 by h((p2,p3)) = f1(p3)(p2)-
We can easily show that § is injective. Let (w, (v,b3)) € X22*9 x (X9% x X3) and

define u : Q3 — X229 by u(ps) = (vP*, w(ps)) where vP3(py) = v(p2,ps). Then
B((u,b3)) = (w, (v,b3)) and thus f is surjective. Now

(110 (12 073))(a(((p1,P2) P3), B((f: b3)), (((q1,92). 43)))
=(71 0 (12 073))((((P1,P2), P3), (h (f2,b3)), a(((q1, 92), g3)))
(11(p1, h(p2,p3), q1), (T2 © 73) (P2, P3), (f2,b3), (92, 43)))
(11(p1, h(p2,P3), 1), N(2(p2, f2(P3), g2), T3(P3, b3, G3)))
(A(T1(p1, M(p2; p3), q1), T2(P2, f2(p3), 42)), 3(P3, b3, 3)))
(A(T1(p1, f1(p3)(P2); q1)s T2(P2, f2(P3), g2)), T3(P3, b3, 43)))
(11 072)((p1,p2), (f1(P3), f2(P3)), (a1, q2)),, 3(P3, b3, 43)))
(11 072)((p1,p2), (5,b2), (q1,42)), 73(p3, b3,43)))  where f(p3) = (s,b2)
(11 072)((p1,p2), f(P3), (41, 42)), T3(P3, b3, G3)))

:((Tl © 7_2) © 7—3)(((1717]72)7]93)7 (f7 b3)7 ((QIa q2)a Q3)))

=A
=A
=A
=A
=A
=A
=A

(ii) Let « be an identity mapping on @1 U Q2 U @3 and 3 be an identity mapping
on X7 U Xs U X3. Then («, 3) be a required isomorphism.

(iii) Let v be an identity mapping on Q1 U Q2 U Q3 and [ : (X1 x X3) x X3 —
X1 x (X2 x X3) be the natural mapping. Then (o, 3) be a required isomorphism.
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Remark. V* is not an associative operation.

5. COVERINGS
The following proposition is in [1,4].

Proposition 5.1. Let M; = (Q1,X1,71) and Ms = (Q2, X2, 72) be fuzzy finite state
machines. Then

(i) My A Mgy <. My x Mg where X; = Xo.

(it) MiwMy <. My o M.

Proposition 5.2. Let My = (Q1,X1,71) and Ms = (Q2, Xo,72) be fuzzy finite state
machines such that Q1 N Q2 =0 and X1 N Xy = 0. Then

(i) My < My V Ms

(i) My < My V* My

Proof. We only prove (i).

(i) Let n : @1 U Q2 — @1 be a partial surjective function defined by n(p1) = p1,
where p; € Q1. And £ : X; — X; U X5 be the natural projection. Then (7,€) is a
required covering of M7 by M7V Mo.

Theorem 5.3. Let My = (Q1,X,71) and Mo = (Q2,X,72) be fuzzy finite state
machines. Then

(i) M1V My < My V* Ms.

(i) My + My < My +* Ms.

Proof. (i) Let n and ¢ identity mappings on Q1 U Q2 and X; U X5 respectively.

Case (a): If (p,a,q) € Q1 x X1 x Q1, then (11 V 12)(n(p),a,n(q)) = n(p,a,q) =
(r1 V™ 72)(p,€(a), ).

Case (b): If (p,a,q) € Q2 x X5 X Q2, then (71 V 172)(n(p),a,n(q)) = 7(p,a,q) =
(11 V™ 12)(p, €(a), q).

Case (c): If (p,a,q) € (@1 x X1 X Q2)U(Q2Xx X2 xQ1), then (11V72)(n(p), a,n(q)) =
(11 V1) (p,a,q) =0 <1 = (1 V" 72)(p,{(a),q)-
(ii) The proof is similar to the proof of (i).
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Theorem 5.4. Let Ml = (QI,XLTI); MQ = (QQ,XQ,TQ) and M3 = (Qg,X3,T3) be
fuzzy finite state machines such that M1 < Ms. Then

(i) M1V Mz < My V Ms.

(’i’i) M1V Mz < Mo VE Ms.

(i1i) My + M3 < Mg + Ms.

Proof. We only show that (i) is hold. Since M; < M, there exist a partial surjective

mapping 1 : Q2 — @1 and a mapping £ : X; — X5 such that 7, (n(p),a,n(q)) <
pifpe@

m2(p,€(a),q). Define ' : Q2 U Qs — Q1 U Q3 by 7/'(p) = { °  and

n(p) if p € Q2
aif a € X5 . ) .
. . Then 7’ is a partial surjective
&(a) ifpe X,y

mapping and ¢’ is a mapping. Show that (11 V 72)(n'(p), a,n'(q)) < (72V 73)(p, &' (a), q),
where p,q € Q2 U Q3 and a € X; U X3.
(i) If p,q € Q2 and a € X1, then

fl : X1 UX3 — X2UX3 by §’(a) =

(11 V7)1 (p),a, ' (q) = T (n(p), a,n(q))
< 12(p,&(a),q)
= (12 V 73)(p, & (), q)

(ii) If p,q € Q3 and a € X3, then

(Tl v 7—3)(77/(17)7&777/((]) = 7'3(]7, a, Q)
= 7—3(pv£/(a)7Q)
= (12 V 73)(p,€'(a), q)

(iii) In all other cases

(1 V13)(0' (p),a,m'(q)) =0
< (r2V13)(p,&(a),q)

This completes the proof.

Theorem 5.5. Let My = (Q1,X1,71), Mo = (Q2, X2, 72) and M3 = (Qs, X3,73) be
fuzzy finite state machines such that My < Ms. Then

(’i) My oMz < Mso Ms.

(i) M3 o My < Mszo Ms.

Proof. Since M1 < Maj, there exist  : Q2 — @1 and £ : X; — X5 such that
T1(n(p2), a1,n(q2)) < 12(p2,€(a1), g2).
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(i) Define 0" : Q2 x Q3 — Q1 x Q3 by 1'((p2,p3)) = (n(p2),p3) and define & :
X x X3 — X% x X3 by €((f,as)) = (£ o f,a3). Then

(110 73)(10' (P2, P3), (f,a3),m (g2, 43))
=(11 0 73)((n(p2),p3) (f, a3), (1(a2) ¢3))
=N (11(n(p2), f(p3),n(a2)), 73(p3, as, g3))
<A (12(p2; (§ 0 f)(p3), 42), T3(p3, a3, g3))
=(72 073)((p27p3)af/((f7 as)), (a2, 43))

(ii) Define ' : Q3 x Q2 — Q3 x Q1 by 7'((p3,p2)) = (p3,1(p2)) and define £ :
X&' % X) — X' x X by €((f,a1)) = (f on,&(ar)). Then

(r3071)(n (p3,p2)a(faa1) (Q3aCJ2))
=(73 0 11)((p3,(p2)), (f,a1), (3. 1(g2)))
= A (73(p3, f(n(p2)), a3), 71 (n(P2), a1, 7(q2)))
<A (73(p3, (f o n)(p2), 43), T2(p2, €(a1), 42))
=(m30712)((p3,p2), &' ((f, 1)), (g3, q2))

This completes the proof.

Theorem 5.6. Let My = (Q1, X1, 71), Mo = (Q2, X2, 72) and M3z = (Q3, X3,73) be
fuzzy finite state machines such that Qo N Q3 = (0. Then

(i) My o (MyV Ms) <. (MjoMs)V (MjioMs) where XoN X3 =10

(ii) My o (Mg V* M3) < (My o Ms) V* (My o Ms) where Xo N X3 =10

(iii) My o (Ma + Ms3) <. (M7 0oMs)+ (M7 o Msj)

Proof. We only prove (i) and (iii).
(1) Recall M1 @) (Mg \/M?,) == (Ql X (QQ U Qg),XleuQB X (XQ UXg),Tl 9} (7'2 \/7'3))
and (Mo Ms)V (MioMs) = ((Q1 X Q2)U(Q1 x Qs), (X2 x X2) U(X[* x X3), (110

T2)V (11073)). Define 7 : (Q1 X Q2)U(Q1 X Qs) — Q1 X (Q2UQ3) by n((p,q)) = (p,q).
And define € : X229 x (X, U X3) — (X2 x X5) U (X923 x X3) by

(f’szb) ifbe X

{50)= { (Fla.b) it b € X,
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Then

T o (r2 vV 13)(n(p,p), (f:0),1(a:4"))

=110 (12 V 13)((0,0), (f,0), (¢,¢"))
=A(1i(p, f(P): 0)s (12 V 73) (P, B, ¢))

{ A (p, F(P), @), 72(p',0,4)), (1',0,4') € Q2 X X2 X Qo

/\(Tl(p7f(p/)7Q)7T3(p/7b7 q/))7 (p/abv q/) S Q3 X X3 X Q3
0, otherwise

(Tl 07—3)(( )7(f|Q37 )7( 7(]/))7 (p/,b, q/) €Q3x X3xQ3

0, otherwise

{ (7-1 OT?)(( )7 (f|Q2a )7( 7q,))7 (plaba q,) € Q2 X X X QQ

=((r1072) V (11 073))((p,0), £(f, 1), (¢:4))

(iii) Recall My o (Ma+Ms) = (Q1 X (Q2UQ3), X279 x (X, x X3), 71 0 (19 +73))
and (My o Ms) + (My o Ms) = ((Q1 x Q2) U (Q1 x Q3), (X[ x Xo) x (X x
X3), (11 07m2) + (11 0713)). Define n: (Q1 x Q2) U (Q1 x Q3) — Q1 x (Q2U Q3) by
n((p,q)) = (p,q). And define £ : XP279 x (X5 x X3) — (X902 x X,) x (XP x X;)
by 5((fv (b27b3))) = ((f’Qzab2)v (f’Q:aabB)) Then

10 (12 +713)(n(p, ), (f, (b2,03)),1(q,4"))
=710 (12 + 73)((p, ), (f, (b2,3)), (¢, 4))
=A(11(p, f(P) @), (T2 + 73) (D', (b2, 03),q'))

{ ANi(p, ('), @), 72(P', b2, d')), P/, 4" € Q2

/\(Tl(paf(p/)>Q)>T3(p,7b37q/))7 p/>q/ € QB

0, otherwise

(reom3) (0, 1'), (flas, b3), (4:4)), P, 4" € Qs

0, otherwise

{ (110 72)((p: 1), (flaz) b2), (4:4)), ', d' € Q2

m1072) + (11 073))((p,0), ((flQa»b2), (flgs:3)), (¢,4"))
T om) + (11 073)) (1), §(f, (b2, 03)), (¢,4"))

This completes the proof.

=((
=((
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