Abstract
Several amino acid transport systems in mammary gland have been characterized during the last few years. These systems may be divided into two broad categories based on whether they are sodium-dependent or $Na^{+}$-independent, and each of these categories is subdivided into 3 groups depending on whether the systems prefer zwitterionic, cationic or anionic substrates. The zwitterion preferring transport processes in mammary gland are $Na^{+}$-dependent system A and $Na^{+}$-independent systems L and T. System $y^{+}$ is a $Na^{+}$-independent transporter of cationic amino acids and $X_{AG^{-}}$ is a $Na^{+}$-dependent system for anionic amino acids. A ($Na^{+}+Cl^{-}$)-dependent system, selective for $\beta$-amino acids has been reported in rat mammary tissue. In addition, there is yet another class of transporters that have still broader specificity. The $Na^{+}$-dependent systems $BCl^{-}$-dependent and $BCl^{-}$-independent and $Na^{+}$-independent system $y^{+}L$ have been reported to mediate the transport of zwitterionic as well as cationic amino acids. Each system has been characterized with respect to its substrate specificity, affinity, kinetics and ion-dependence. Transport of amino acids by mammary tissue is regulated by i) the intracellular substrate concentration, ii) lactogenic hormones and iii) milk stasis. Four of the above transport systems (i.e. A, L, $y^{+}$ and $BCl^{-}$-independent) are up-regulated by lactogenic hormones (insulin, cortisol and prolactin) in mammary gland.