DOI QR코드

DOI QR Code

Stochastic finite element method homogenization of heat conduction problem in fiber composites

  • Kaminski, Marcin (Division of Mechanics of Materials, Technical University of Lodz)
  • Published : 2001.04.25

Abstract

The main idea behind the paper is to present two alternative methods of homogenization of the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second order perturbation second probabilistic moment method, with its computational implementation known as the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic homogenization method, being extended to probabilistic spaces, is based on the effective modules approach. Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand, to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These computational studies are provided in the range of up to fourth order probabilistic moments of effective conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

Keywords

References

  1. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Englewood Cliffs.
  2. Bendat, J.S., and Piersol A.G. (1971), Random Data: Analysis and Measurement Procedures, Wiley.
  3. Beran, M.J. (1974), "Application of statistical theories for the determination of thermal, electrical and magnetic properties of heterogeneous materials", Mech. of Composite Materials, Broutman, L.J. et al., eds., Academic Press.
  4. Boswell, M.T. et al. (1991), "The art of computer generation of random variables", C.R. Rao, ed., Handbook of Statistics, Computational Statistics, Elsevier, 9, 662-721.
  5. Choi, C.K., and Noh, H.C. (1996), "Stochastic finite element analysis of plate structures by weighted integral method", Struct. Eng. and Mech., An Int. J., 4(6), 703-715. https://doi.org/10.12989/sem.1996.4.6.703
  6. Christensen, R.M. (1979), Mechanics of Composite Materials, Wiley-Interscience.
  7. Elishakoff, I., Ren, Y.J., and Shinozuka, M. (1995), "Improved finite element method for stochastic problems", Chaos, Solitons and Fractals, 5(5), 833-846. https://doi.org/10.1016/0960-0779(94)00157-L
  8. Furma ski, P. (1997), "Heat conduction in composites: Homogenization and macroscopic behavior", Appl. Mech. Review, 50(6), 327-355. https://doi.org/10.1115/1.3101714
  9. Ghanem, R.G., and Spanos, P.D. (1997), "Spectral techniques for stochastic finite elements", Arch. of Comput. Method in Eng., 4(1), 63-100. https://doi.org/10.1007/BF02818931
  10. Hammersley, J.M., and Handscomb, D.C. (1964), Monte Carlo Methods, Wiley.
  11. Hien, T.D. and Kleiber, M. (1997), "Stochastic finite element modeling in linear transient heat transfer", Comput. Method in Appl. Mech. and Eng., 144, 111-124. https://doi.org/10.1016/S0045-7825(96)01168-1
  12. Hurtado, J.E. and Barbat, A.H. (1998), "Monte Carlo techniques in computational stochastic mechanics", Arch. of Comput. Method in Eng., 5(1), 3-30. https://doi.org/10.1007/BF02736747
  13. Kami ski, M. (1996), "Homogenization in elastic random media", Computer Assisted Mech. and Eng. Sci., 3(1), 9-22.
  14. Kami ski, M. (1999), "Monte-Carlo simulation of effective conductivity for fiber composites", Int. Communications in Heat and Mass Transfer, 26(6), 801-810. https://doi.org/10.1016/S0735-1933(99)00068-8
  15. Kaminski, M., and Kleiber, M. (1996), "Stochastic structural interface defects in fiber composites", Int. J. of Solids and Struct., 33(20-22), 3035-3056. https://doi.org/10.1016/0020-7683(95)00264-2
  16. Kaminski, M., and Kleiber, M. (2000), "Perturbation based stochastic finite element method for homogenization of two-phase elastic composites", Comput. & Struct., 78(6), 811-826. https://doi.org/10.1016/S0045-7949(00)00116-4
  17. Kleiber, M., and Hien, T.D. (1992), The Stochastic Finite Element Method, Wiley.
  18. Krishnamoorthy, C.S. (1994), Finite Element Analysis, McGraw-Hill.
  19. Pepper, D.W., and Heinrich, J.C. (1992), "The finite element method", Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Hemisphere Publ. Comp.
  20. Rao, H.S. et al. (1997), "A model of heat transfer in brake pads by mathematical homogenization", Sci. and Eng. of Compos. Mater, 6(4), 219-224.
  21. Sab, K. (1992), "On the homogenization and the simulation of random materials", Eur. J. of Mech. A-Solids, 11, 585-607.
  22. Sanchez-Palencia, E. and Zaoui, A., eds. (1987), "Homogenization techniques for composite materials", Lect. Notes Phys., 272, Springer-Verlag.
  23. Schellekens, J.C.J. (1992), Computational Strategies for Composite Structures, TU Delft.
  24. Wozniak, Cz. and Wozniak, M. (1995), "Modeling in dynamics of composite materials: Theory and applications", IFTR PAS Rep. No 25.

Cited by

  1. Effective property predictions in multi-scale solidification modeling using homogenization theory vol.348, pp.3-6, 2006, https://doi.org/10.1016/j.physleta.2005.08.045
  2. Identification of a microscopic randomness of a particle reinforced composite material with Monte-Carlo Simulation and inverse homogenization analysis vol.10, 2010, https://doi.org/10.1088/1757-899X/10/1/012186
  3. Polynomial-based Approximate Inverse Stochastic Homogenization Analysis of a Particle Reinforced Composite Material Considering Correlated Multiple Microscopic Random Variations vol.5, pp.1, 2016, https://doi.org/10.7791/jspmee.5.32
  4. Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters vol.106-107, 2017, https://doi.org/10.1016/j.ijsolstr.2016.11.022
  5. Hierarchical stochastic homogenization analysis of a particle reinforced composite material considering non-uniform distribution of microscopic random quantities vol.48, pp.5, 2011, https://doi.org/10.1007/s00466-011-0604-7
  6. Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty vol.45, pp.3-4, 2008, https://doi.org/10.1016/j.ijsolstr.2007.09.008
  7. A successive perturbation-based multiscale stochastic analysis method for composite materials vol.102-103, 2015, https://doi.org/10.1016/j.finel.2015.05.001
  8. Implementation of the Multiscale Stochastic Finite Element Method on Elliptic PDE Problems vol.14, pp.01, 2017, https://doi.org/10.1142/S0219876217500037
  9. Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach vol.88, pp.7-8, 2010, https://doi.org/10.1016/j.compstruc.2009.12.007
  10. A Stochastic Homogenization Analysis for a Thermoelastic Problem of a Unidirectional Fiber-Reinforced Composite Material with the Homogenization Theory vol.36, pp.5, 2013, https://doi.org/10.1080/01495739.2013.770359
  11. Added effect of uncertain geometrical parameter on the response varibility of Mindlin plate vol.20, pp.4, 2005, https://doi.org/10.12989/sem.2005.20.4.477
  12. Ns-kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites vol.38, pp.5, 2009, https://doi.org/10.1007/s00158-008-0296-6
  13. Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation vol.18, pp.2, 2004, https://doi.org/10.12989/sem.2004.18.2.137
  14. Stochastic analysis of laminated composite plate considering stochastic homogenization problem vol.9, pp.2, 2015, https://doi.org/10.1007/s11709-014-0286-2
  15. Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method vol.45, pp.25-26, 2008, https://doi.org/10.1016/j.ijsolstr.2008.08.017
  16. Random homogenization analysis in linear elasticity based on analytical bounds and estimates vol.48, pp.2, 2011, https://doi.org/10.1016/j.ijsolstr.2010.10.004
  17. A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties 2010, https://doi.org/10.1002/nme.2829
  18. Stochastic Analysis of Microscopic Stress in Fiber Reinforced Composites Considering Uncertainty in a Microscopic Elastic Property vol.4, pp.5, 2001, https://doi.org/10.1299/jmmp.4.568
  19. Immune algorithm-embedded stochastic meshless method for structural reliability vol.226, pp.2, 2012, https://doi.org/10.1177/0954406211414522