DOI QR코드

DOI QR Code

Thermo-elastoplastic characteristics of heat-resisting functionally graded composite structures

  • Cho, Jin-Rae (School of Mechanical Engineering, Pusan National University) ;
  • Ha, Dae-Yul (School of Mechanical Engineering, Pusan National University)
  • Published : 2001.01.25

Abstract

This paper is concerned with a study on thermo-elastoplastic characteristics of functionally graded composite. Compared to the classical layered composites, it shows a wide range of thermo-elastoplastic characteristics according to the choice of two major parameters, the thickness-wise volume fraction of constituents and the relative thickness ratio of the graded layer. Therefore, by selecting an appropriate combination of the two parameters, one is expected to design the most suitable heat-resisting composite for a given thermal circumstance. Here, we address the parametric investigation on its characteristics together with theoretical study on thermo-elastoplasticity and numerical techniques for its finite element approximations. Through the numerical experiments, we examine the influence of two parameters on the thermo-elastoplastic characteristics.

Keywords

References

  1. Carey, G.F. and Oden, J.T. (1984), Finite Elements: Computational Aspects, Vol. III, Prentice-Hall, New Jersey.
  2. Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: A parametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Methods Appl. Mech. Engrg., 188, 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3
  3. Cho, J.R. and Ha, D.Y. (2000), "Dual-phase functionally graded composite materials: overall and discrete analysis models", Key Engrg. Mater., 183-187, 373-378. https://doi.org/10.4028/www.scientific.net/KEM.183-187.373
  4. Christensen, R.M. (1979), Mechanics of Composite Materials, Wiley-Interscience, New York.
  5. Giannakopoulos, A.E., Suresh, S., Finot, M. and Olsson, M. (1995), "Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients", Acta Metall. Mater., 43(4), 1335-1354. https://doi.org/10.1016/0956-7151(94)00360-T
  6. Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behavior of multiphase systems", J. Mech. Phys. Solids, 11, 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  7. Hirano, T. and Wakashima, K. (Jan. 1995), "Mathematical modeling and design", MRS Bulletin, 40-42.
  8. Johnson, C. (1990), Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambrige.
  9. Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity : Theory and Practice, Pineridge Press.
  10. Praveen, G.N., Chin, C.D. and Reddy, J.N. (1999), "Thermoelastic analysis of a functionally graded ceramicmetal cylinder", ASCE Engrg. Mech., 125(11), 1259-1267. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1259)
  11. Ravichandran, K.S. (1994), "Elastic properties of two-phase composites", J. Am. Ceram. Soc., 77(5) 1178-1184. https://doi.org/10.1111/j.1151-2916.1994.tb05390.x
  12. Reiter, T. and Dvorak, G.J. (1998), "Micromechanical models for graded composite materials. II: Thermomechanical loading", J. Phys. Solids, 46(9), 1655-1673. https://doi.org/10.1016/S0022-5096(97)00039-2
  13. Schapery, R.A. (1968), "Thermal expansion coefficients of composite materials", J. Comp. Mater., 2, 380-404. https://doi.org/10.1177/002199836800200308
  14. Tomata, Y., Kukori, K., Mori, T. and Tamura, T. (1976), "Tensile deformation of two-ductile-phase alloys: flow curves ${\alpha}-{\gamma}Fe-Cr-Ni$ alloys", Mater. Sci. Engrg., 24, 85-94. https://doi.org/10.1016/0025-5416(76)90097-5
  15. Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V.F. and Sugano, Y. (1993), "Design of thermoelastic materials using direct sensitivity and optimization methods. Reduction of thermal stresses in functionally gradient materials", Comput. Methods Appl. Mech. Engrg., 106, 271-284. https://doi.org/10.1016/0045-7825(93)90193-2
  16. Wakashima, K. and Tsukamoto, H. (1991), "Mean-field micromechanics model and its application to the analysis of thermomechanical behavior of composite materials", Mater. Science Engrg., A146, 291-316.
  17. Yoshitake, A., Tamura, M., Shito, I. and Niino, M. (1990), "Fabrication of the functionally gradient materials (FGM)", The State of Art, ESA Symposium on Space Application of Advanced Sturctural Materials.
  18. Williamson, R.L., Rabin, B.H. and Drake, J.T. (1993), "Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1: Model description and geometrical effects", J. Appl. Phys., 74(2), 1310-1320. https://doi.org/10.1063/1.354910

Cited by

  1. Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM vol.191, pp.29-30, 2002, https://doi.org/10.1016/S0045-7825(02)00256-6
  2. Finite element investigation on spring-back characteristics in sheet metal U-bending process vol.141, pp.1, 2003, https://doi.org/10.1016/S0924-0136(03)00163-8
  3. Topology and parameter optimization of a foaming jig reinforcement structure by the response surface method vol.43, pp.12, 2011, https://doi.org/10.1016/j.cad.2011.08.008
  4. Nonlinear finite element analysis of swaging process for automobile power steering hose vol.170, pp.1-2, 2005, https://doi.org/10.1016/j.jmatprotec.2005.04.077
  5. Numerical investigation of bolt fitting and fastening forces by elastoplastic finite element analysis vol.66, pp.1-4, 2013, https://doi.org/10.1007/s00170-012-4306-x
  6. Optimum material composition design for thermal stress reduction in FGM lathe bit vol.37, pp.10, 2006, https://doi.org/10.1016/j.compositesa.2005.11.001
  7. Effective volume-fraction optimization for thermal stress reduction in FGMs using irregularh-refinement vol.58, pp.5, 2003, https://doi.org/10.1002/nme.799
  8. Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading vol.53, pp.4, 2015, https://doi.org/10.12989/sem.2015.53.4.703
  9. High strength FGM cutting tools: finite element analysis on thermoelastic characteristics vol.130-131, 2002, https://doi.org/10.1016/S0924-0136(02)00823-3