Diffusion-Weighted MR Imaging of Intracerebral Hemorrhage

  • Bo Kiung Kang (Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Dong Gyu Na (Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jae Wook Ryoo (Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hong Sik Byun (Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hong Gee Roh (Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Yong Seon Pyeun (Department of Diagnostic Radiology, Masan Samsung Hospital, Sungkyunkwan University School of Medicine)
  • Received : 2001.04.06
  • Accepted : 2001.07.13
  • Published : 2001.12.31

Abstract

Objective: To document the signal characteristics of intracerebral hemorrhage (ICH) at evolving stages on diffusion-weighted images (DWI) by comparison with conventional MR images. Materials and Methods: In our retrospective study, 38 patients with ICH underwent a set of imaging sequences that included DWI, T1-and T2-weighted imaging, and fluid-attenuated inversion recovery (FLAIR). In 33 and 10 patients, respectively, conventional and echo-planar T2* gradient-echo images were also obtained. According to the time interval between symptom onset and initial MRI, five stages were categorized: hyperacute (n=6); acute (n=7); early subacute (n=7); late subacute (n=10); and chronic (n=8). We investigated the signal intensity and apparent diffusion coefficient (ADC) of ICH and compared the signal intensities of hematomas at DWI and on conventional MR images. Results: DWI showed that hematomas were hyperintense at the hyperacute and late subacute stages, and hypointense at the acute, early subacute and chronic stages. Invariably, focal hypointensity was observed within a hyperacute hematoma. At the hyperacute, acute and early subacute stages, hyperintense rims that corresponded with edema surrounding the hematoma were present. The mean ADC ratio was 0.73 at the hyperacute stage, 0.72 at the acute stage, 0.70 at the early subacute stage, 0.72 at the late subacute stage, and 2.56 at the chronic stage. Conclusion: DWI showed that the signal intensity of an ICH may be related to both its ADC value and the magnetic susceptibility effect. In patients with acute stroke, an understanding of the characteristic features of ICH seen at DWI can be helpful in both the characterization of intracranial hemorrhagic lesions and the differentiation of hemorrhage from ischemia.

Keywords

References

  1. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT. Intracranial hematomas: imaging by high-field MR. Radiology 1985;157:87-93 https://doi.org/10.1148/radiology.157.1.4034983
  2. Bradley WG. MR appearance of hemorrhage in the brain. Radiology 1993;189:15-26 https://doi.org/10.1148/radiology.189.1.8372185
  3. Ebisu T, Tanaka C, Umeda M, et al. Hemorrhagic and nonhemorrhagic stroke: diagnosis with diffusion-weighted and T2- weighted echo-planar MR imaging. Radiology 1997;203:823-828 https://doi.org/10.1148/radiology.203.3.9169711
  4. Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765-768 https://doi.org/10.1161/01.STR.30.4.765
  5. Felber S, Auer A, Wolf C, et al. MRI characteristics of spontaneous intracerebral hemorrhage. Radiologe 1999;39:838-846 https://doi.org/10.1007/s001170050720
  6. Atlas SW, DuBois P, Singer MB, Lu D. Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. Am J Neuroradiol 2000;21:1190-1194
  7. Carhuapoma JR, Wang PY, Beauchamp NJ, et al. Diffusion-weighted MRI and proton MR spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage. Stroke 2000;31:726-732 https://doi.org/10.1161/01.STR.31.3.726
  8. Wiesmann M, Mayer TE, Yousry I, Hamann GF, Bruckmann H. Detection of hyperacute parenchymal hemorrhage of the brain using echo-planar T2* -weighted and diffusion-weighted MRI. Eur Radiol 2001;11:849-853 https://doi.org/10.1007/s003300000649
  9. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990;14:330-346 https://doi.org/10.1002/mrm.1910140218
  10. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. AJNR 1992;13:1097-1102
  11. Sorensen AG, Buonanno FS, Gonzalez RG, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 1996;199:391-401 https://doi.org/10.1148/radiology.199.2.8668784
  12. Marks MP, de Crespigny A, Lentz D, et al. Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging. Radiology 1996;199:403-408 https://doi.org/10.1148/radiology.199.2.8668785
  13. Gonzalez RG, Schaefer P, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 1999;210:155-162 https://doi.org/10.1148/radiology.210.1.r99ja02155
  14. Sunshine J, Tarr R, Lanzieri C, Landis D, Selman W, Lewin J. Hyperacute stroke: ultrafast MR imaging of triage patients prior to therapy. Radiology 1999;212:325-332 https://doi.org/10.1148/radiology.212.2.r99au52325
  15. Patel MR, Edelman RR, Warach S. Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 1996;27:2321-2324 https://doi.org/10.1161/01.STR.27.12.2321
  16. Atlas SW, Thulborn KR. MR detection of hyperacute parenchymal hemorrhage of the brain. AJNR 1998;19:1471-1477
  17. Linfante I, Llinas RH, Caplan LR, Warach S. MRI features of intracerebral hemorrhage within 2 hours of symptom onset. Stroke 1999;30:2263-2267 https://doi.org/10.1161/01.STR.30.11.2263
  18. Clark RA, Watanabe AT, Bradley WG, Roberts JD. Acute hematomas: effects of deoxyhemoglobin, hematocrit, and fibrin-clot formation and retraction on T2 shortening. Radiology 1990;174:201-206 https://doi.org/10.1148/radiology.175.1.2315481
  19. Hayman LA, Taber KH, Ford JJ, et al. Effect of clot formation and retraction on spin-echo MR images of blood: an in vitro study. AJNR 1989;10:1155-1158
  20. Hayman LA, Ford JJ, Taber KH, et al. T2 effect of hemoglobin concentration: assessment with in vitro MR spectroscopy. Radiology 1988;168:489-491 https://doi.org/10.1148/radiology.168.2.3393669
  21. Beall P, Hazlewood C, Rao P. Nuclear magnetic resonance patterns of intracellular water as a function of HeLa cell cycle. Science 1976;192:904-907 https://doi.org/10.1126/science.1273575
  22. Hargens A, Bowie L, Lent D, et al. Sickle-cell hemoglobin: fall in osmotic pressure upon deoxygenation. Proc Natl Acad Sci USA 1980;77:4310-4312 https://doi.org/10.1073/pnas.77.7.4310
  23. Brooks RA, Di Chiro G, Patronas N. MR imaging of cerebral hematomas at different field strengths: theory and applications. J Comput Assist Tomogr 1989;13:194-206 https://doi.org/10.1097/00004728-198903000-00002
  24. Bryant RG, Marill K, Blackmore C, Francis C. Magnetic relaxation in blood and blood clots. Magn Reson Med 1990;13:133-144 https://doi.org/10.1002/mrm.1910130112
  25. Does MD, Zhong J, Gore JC. In vivo measurement of ADC change due to intravascular susceptibility variation. Magn Reson Med 1999;41:236-240 https://doi.org/10.1002/(SICI)1522-2594(199902)41:2<236::AID-MRM4>3.0.CO;2-3
  26. Schaefer PW. Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology 2000;217:331-345 https://doi.org/10.1148/radiology.217.2.r00nv24331
  27. Thulborn KR, Sorensen AG, Kowall NW, et al. The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJNR 1990;11:291-297