Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid

분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구

  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Rhee, Dong-Seok (Department of Environmental Engineering, Kangwon National University) ;
  • Kang, Kihoon (Department of Civil Engineering, Korea Advanced Institute Science and Technology)
  • 신현상 (서울산업대학교 환경공학과) ;
  • 이동석 (강원대학교 공과대학 환경.생물학부) ;
  • 강기훈 (한국과학기술원 토목공학과)
  • Received : 2001.01.09
  • Published : 2001.04.25

Abstract

A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

한외여과법을 이용하여 휴믹산(Aldrich Co.)을 분자량 별로 3개의 소부분($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons)으로 분리한 뒤, 적외선 분광법과 고체상태 C-13 핵자기공명 분광법을 이용하여 각 소부분의 구조적 특성을 규명하였고, pH 적정법을 이용하여 각 소부분의 카르복실산 작용기 함량을 결정하였다. 휴믹산과 금속이온과의 착물 반응 특성을 규명하기 위하여, Eu(III)과 각 소부분 휴믹산과의 착화합물($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$, at pH 5.0)을 Eu(III)의 $^7F_0-{^5}D_0$ 전이를 이용한 여기 스펙트럼으로 관찰하였다. 적외선 스펙트럼과 C-13 핵자기공명 스펙트럼 분석 결과, 100,000 dalton 이상의 고분자량의 휴믹산 분자는($F_3$) 높은 지방족 탄소함량을 가지며, 50,000 daltons 이하의 저 분자량의 휴믹산($F_1$, $F_2$) 분자는 상대적으로 높은 방향족 탄소 함량을 가짐을 확인하였다. pH 적정 결과 휴믹산은 분자의 크기가 커질수록 더 낮은 카르복실기 함량을 가짐을 확인하였다. Eu(III)-휴믹산 착물의 여기스펙트럼을 Lorenzian-Gaussian 식을 이용하여 분석한 결과, 휴믹산 분자의 크기가 커질수록 최대피크의 파장 위치가 더 낮은 에너지 방향으로 이동하였다. 이러한 피크 이동의 결과는 휴믹산 분자의 크기가 커질수록 Eu(III)과 결합하는 분자내 카르복실산의 배위수가 증가함을 나타내는 것으로서, C-13 NMR 스펙트럼 분석에서 밝혀진 휴믹산 분자의 구조적인 요인과의 관련성을 밝혔다.

Keywords

References

  1. Humus Chemistry, Genesis, Composition, Reactions F.J.Stevenson
  2. Complexation reactions in aquatic systems J.Buffle
  3. Handbook on the physics and chemistry of the actinides Chemical behaviour of transuranic elements in natural aquatic systems J.I.Kim;Freeman,A.J.(ed.);Keller,C.(ed.)
  4. Environ.Sci.Technol. v.26 S.A.Green;F.M.M.Morel;N.V.Blogh
  5. Talanta v.43 M.Fukushima;S.Tanaka;H.Nakamura;S.Ito
  6. J.Korean Chem.Soc. v.39 H.S.Shin;H.Moon;H.B.Yang;S.S.Yun
  7. Radiochim.Acta. v.69 L.Rao;G.R.Choppin
  8. Chem.Rev. v.82 F.S.Richardson
  9. J.Am.Chem.Soc. v.101 W.D.Jr.Horrock;D.R.Sudnick
  10. Environ.Sci.Technol. v.26 H.Y.Ke;E.R.Birnbaum;D.W.Darnall;G.D.Rayson;P.J.Jackson
  11. Environ.Sci.Technol. v.28 Y.T.Yoon;H.Moon;Y.J.Park;K.K.Park
  12. Org.Geochem. v.24 H.S.Shin;S.W.Rhee;B.H.Lee;H.C.Moon
  13. J.Inorg.Nucl.Chem. v.35 J.Buffle;P.Deladdy;W.Haerdi
  14. NMR of Humic Substances and Coal R.L.Wershaw;M.A.Mikita
  15. Mat.Chem.Phys. v.31 S.Lis;G.R.Choppin
  16. Radiochim.Acta v.54 J.I.Kim;H.Wimmer;R.Klenze
  17. J.Alloys Comp. v.196 G.F.De Sa;L.H.A.Nunes;Z.M.Wang;G.R.Choppin
  18. Appl.Spectrosc. v.43 W.MaNemar;Jr.W.D.Horrocks
  19. J.Inorg.Nucl.Chem. v.42 K.L.Nash;G.R.Choppin
  20. Chemist Analyst v.45 J.Korbl;R.Pribil
  21. Geochim.Cosmochim.Acta v.45 J.H.Reuter;E.M.Perdue
  22. Geochim.Cosmochim.Acta v.35 F.J.Stevenson;K.M.Goh
  23. Inorg.Chem. v.36 G.R.Choppin;Z.W.Wang
  24. Inorg.Chem. v.24 M.Albin;D.Jr.Horrocks
  25. Soil Sci. v.161 H.S.Shin;H.C.Moon
  26. Soil Sci. v.34 K.Murray;P.W.Linder
  27. J.Phys.Chem. v.79 J.A.Marinsky;W.M.Anspach