Effect of Juvenile Fish Predation on the Zooplankton Community in the Large Regulated Nakdong River, South Korea

저수지화 성향을 띤 낙동강에서 치어 섭식이 동물플랑크톤 군집에 미치는 영향

  • Chang, Kwang-Hyeon (Department of Biology, Pusan National University, Research and Education Center for Inlandwater Environment, Shinshu University) ;
  • Hwang, Soon-Jin (Department of Biological Systems Engineering, Kokuk University) ;
  • Jang, Min-Ho (Department of Biology, Pusan National University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • Jeong, Kwang-Seuk (Department of Biology, Pusan National University) ;
  • Joo, Gea-Jae (Department of Biology, Pusan National University)
  • 장광현 (부산대학교 생물학과, 信州大學 山地水水環境敎育硏究센타) ;
  • 황순진 (건국대학교 지역생태시스템공학과) ;
  • 장민호 (부산대학교 생물학과) ;
  • 김현우 (순천대학교 환경교육과) ;
  • 정광석 (부산대학교 생물학과) ;
  • 주기재 (부산대학교 생물학과)
  • Published : 2001.12.31

Abstract

In the large regulated Nakdong River, the Predation effect of juvenile fish on the zooplankton community was evaluated by gut and stomach analyses of fish in 1999. Juvenile fish of five species showed high density from May to early June when river discharge was low and water body became stagnant. During this period, large rotifers, Asplanchna spp. and Brachionus spp. declined and the decrease of cladoceran (Moina micrura and Bosminopsis deitersi) density was also obeserved. At this time, small rotifers including Polyarthra spp. reached maximum density. Gut analysis of fish demonstrated that small-sized juvenile fish (< 15 mm in total length)preferred large rotifers as well as cladocerans, while large sized fish (> 15 mm)selected only cladocerans. On the other hand, juvenile Micropterus salmoides of which size was larger than other juvenile fish consumed not only zooplankton but also other small juvenile fish. Based on these results, the decline of large rotifers and cladocerans during early summer in the river seems to be result of predation by juvenile fish. However, the period when juvenile fish maintained their high density was as short as one month and the decreased density of cladocera rapidly recovered as soon as juvenile fish became scarce. Such a short period of juvenile fish devel-opment in the river can be attributed to the consumption of juvenile fish by the young-of-the-year cohorts as well as adults of M. salmoides. The high trophic state of the river might permit the rapid recovery of the cladoceran community. The predation impact of juvenile fish in the Nakdong River seems to be affected by the existence of piscivore as well as high trophic status.

낙동강에서 치어섭식이 동물플랑크톤에 미치는 영향을 채집된 치어의 소화관조사를 통해 고찰하였다. 조사지역인 낙동강 하류 물금에서는 유량이 감소하고 수체가 정체되는 5월에서 6월사이 5종류의 치어가 높은 밀도를 나타내었다 같은 시기, 동물플랑크톤 군집내에서는 대형윤충류인 Asplanchna spp.와 Brachionus spp., 지각류인 Moina micrura 및 Bosminopsis deitersi의 밀도가 큰 폭으로 감소하였다. 반면, Polyarthra속의 소형윤충류는 최대 밀도를 나타내었다. 채집된 치어의소화관 조사 결과, 15 mm이하의 치어는 대형윤충류 및 지각류를, 15mm 이상의 치어인 경우 지각류를 선택적으로 섭식하는 것으로 나타났다. 큰입배스의 치어의 경우, 같은 시기 채집된 치어에 비해 대형이었으며 동물플랑크톤 뿐 아니라 다른 치어를 포식하는 것으로 조사되었다. 조사 결과, 이시기의 낙동강 동물플랑크톤 군집내의 대형 윤충류와 지각류의 급격한 밀도 감소는 치어의 섭식으로 인한 것으로 사료된다. 반면, 이러한 밀도감소는 치어의 수가 감소함에 따라 회복되는 경향을 보였다. 부영양화된 낙동강의 경우 배스치어의 섭식으로 인한 치어밀도의 급속한 감소, 풍부한 먹이농도 등이 감소한 지각류의 밀도회복을 유도하는 것으로 사료된다.

Keywords

References

  1. Can. J. Fish. Aquat. Sci. v.53 Seasonal patterns in the mortality of Daphnia species in a shallow lake. Boersma, M.;O.F.R. van Tongeren;W.M. Mooij
  2. The Trophic Cascade in Lakes Carpenter, S.R.;T.M. Kitchell.
  3. Ecology v.9 Measuring preference in selective predation Chesson, J.
  4. Limnol. Oceanogr. v.31 Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Cryer, M.;G. Peirson;C.R. Townsend.
  5. Can. J. Fish. Aquat. Sci. v.49 Complex interactions between fish and zooplankton: Quantifying the role of an open-water planktivore. DeVries, D.R.;R.A. Stein.
  6. Plankton Ecology The role of predation in zooplankton succession. Gliwicz Z.M.;J. Pijanowska.;U. Sommer(ed.)
  7. J. Plankton Res. v.22 Daphnia populations in three interconnected lakes with roach as the principal planktivore. Gliwicz, Z.M.;A.E. Rutkowska;J. Wojciechowska.
  8. Hydrobiologia v.369;370 The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Ha, K.;H.W. Kim;G.J. Joo.
  9. Mar. Freshwater Res. v.50 Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Ha, K.;E.A. Cho;H.W. Kim;G.J. Joo.
  10. Jpn. J. Limnol. v.46 Effect of temperature in the laboratory studies on growth, egg development and first parturition of five species of cladocera. Hanazato T.;M. Yasuno.
  11. Arch. Hydrobiol. v.96 Two feeding strategies of young fishes Hartmann, J.
  12. Freshwater Biol. v.37 Predation by underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Hulsmann, S.;T. Mehner.
  13. The ecology of running waters. Hynes, H.B.N.
  14. Internat. Rev. Hydrobiol. v.83 Eutrophication of the lower Nakdong River after the construction of an estuary dam in 1987. Kim, H.W.;K. Ha;G.J. Joo
  15. J. Plankton Res. v.22 Zooplankton grazing on bacteria and phytoplankton in the regulated Nakdong River(Korea) Kim, H.W.;S.J. Hwang;G.J. Joo.
  16. Can. J. Fish. Aquat. Sci. v.49 Planktivores and plankton dynamics: Effects of fish biomass and planktivore type. Lazzario, X.;R.W. Drenner;R.A. Stein;J.D. Smith
  17. Kor. J. Lim. v.30 Changes in zooplankton community during the Blue-green algal bloom in the Nakdong River. Lim, B.J.;B.C. Kim;K.I. Yoo;J.K. Ryu.
  18. Verh. Internat. Verein. Limnol. v.24 Age-0 yellow perch (Perca flavescens) dietary ontogeny in the western basin of Lake Erie: Effect of midsummer decline in zooplankton populations. Lin, W.;D.A. Culver.
  19. Limnol. Oceanogr. v.35 Seasonal regulation of Daphnia populations by planktivorous fish: Implications for the spring clear-water phase. Luecke, C.;M.J. Vanni;J.J. Magnuson;J.F. Kitchell;P.T. Jacobson.
  20. Limnol. Oceanogr. v.24 Predation, competition and zooplankton community structure: an experimental study. Lynch, M.
  21. Arch. Hydrobiologia v.142 Gape-size dependent feeding of age-0 perch(Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata Mehner, T.;M. Plewa;S. Hulsmann;S. Worischka
  22. J. Plankton Res. v.20 Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. Mehner, T.;S. Hulsmann;S. Worischka;M. Plewa;J. Benndorf.
  23. The Research for Ecological Effect of Endocrine (in Korean.) Ministry of Environment, Korea.
  24. Ecology v.76 Perturbation and resilience in an aquatic community: A long-term study of the extinction and reintroduction of a top predator. Mittelbach, G.G.;A.M. Turner;D.J. Hall;R.E. Rettig;C.W. Osenberg
  25. Ecology v.77 Ontogenetic niche shift in largemouth bass: Variability and consequences for first-year growth Olson, M.H.
  26. Can. J. Fish. Aquat. Sci. v.49 Zooplankton in advective environments: The Hudson River community and a comparative analysis. Pace, M.L.;S.E.G. Findlay;D. Lints.
  27. Limnol. Oceanogr. v.19 Calculaion of instantaneous birth rate. Paloheimo, J.E.
  28. Can. J. Fish. Aquat. Sci. v.48 Selectivity by age 0 white perch (Morone americana) and yellow perch (Perca flavescens) in laboratory experiments. Parrish, D.L.;F.J. Margraf.
  29. Limnol. Oceanogr. v.42 Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure. Post, D.M.;S.R. Carpenter;D.L. Christensen;K.L. Cottingham;J.F. Kitchell;D.E. Schindler;J.R. Hodgson.
  30. Hydrobiologia v.297 Effect of young-of-the-year walleye (Percidae: Stizostedion vitreum) on plankton dynamics and water quality in ponds. Qin, J.;D.A. Culver.
  31. Hydrobiologia v.404 Juvenile fish expansion following biomanipulation and its effect on zooplankton. Romare, P.;E. Bergman.
  32. Ecology v.74 The rise and fall of a dominant planktivore: Direct and indirect effects on zooplankton. Rudstam L.G.;R.C. Lathrop;S.R. Carpenter.
  33. Can. J. Fish. Aquat. Sci. v.51 Zooplankton assemblages in the Ohio River: Seasonal, tributary and navigation dam effects. Thorp, J.H.;A.R. Black;K.H. Haag;J.D. Wehr.
  34. Ecology v.67 Fish predation and zooplankton demography: Indirect effects. Vanni, M.J.
  35. Hydrobiologia v.207 Seasonal variation in the interactions between piscivorous fish, planktivorous fish and zooplankton in a shallow eutrophic lake. Vijverberg, J.;M. Boersma;W.L.T. van Densen;W. Hoogenboezem;E.H.R.R. Lammens;W.M. Mooij.
  36. Limnological Analyses, 2nd ed. Wetzel, R.G.;G.E. Likens.
  37. Verh. Internat. Verein. Limnol. v.23 0+ fish as major factors affecting abundance patterns of littoral zooplankton. Whiteside, M.C.