이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland

  • ;
  • 강호정 (이화여자대학교 환경학과)
  • Freeman, Chris (School of Biological Sciences, University of Wales, Bangor) ;
  • Kang, Ho-Jeong (Dept. of Environmental Science and Engineering, Ewha Wpmans University)
  • 발행 : 2001.12.31

초록

이산화탄소 농도가 증가할 때에 북구 이탄 습지에서 나타나는 생지화학적 변화과정을 살펴보았다. 표면 식생을 포함한 온전한 코어를 북웨일스의 이탄습지로부터 채취하여, 높은 이산화탄소농도(700ppm)와 자연상태 (350ppm)환경에서 4개월간 배양하였다. 배양 후, 화학적인 저해제를 이용하여 습지 토양에서 미량기체의 생성과 소비를 측정하였다. 메탄의 경우, 불화메탄($CH_3F$)를 이용하여 메탄 산화율을 결정하였고, 질산화와 탈질작용을 측정하기위해 아세틸렌($C_2H_2$)저해 방법을 적용하였다. 이를 위해, 먼저 각 측정 방법을 습지 시료에 적합하도록 최적화 시켰고, 둘째로 두 수준의 이산화탄소에서 배양한 시료에 이 방법들을 적용하였다. 높은 이산화탄소 농도는 메탄의 생성량을 증가 시켰으나(210대 $100\;ng\;CH_4 g^{-1}\;hr^{-1}$), 메탄 산화의 양도 증가시켜서 (128대 $15\;ng\;CH_4 g^{-1}\;hr^{-1}$) 결국에는 순메탄 방출량에는 변화가 없었다. 아산화질소의 경우에는 증가된 발생량이 탈질 보다는 질산화 과정에서 생성된 것으로 사료된다. 이러한 변화들은 높은 이산화탄소 하에서 조류의 성장이 증가되어 야기된 것으로 추측된다.

Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

키워드

참고문헌

  1. Oecologia v.116 Stimulated N₂O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO₂ Arnone,J.A.;P.J. Bohlen
  2. Nature v.370 Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Dacey, J.W.H.;B.G. Drake;M.J. Klug.
  3. Appl. Environ. Microbiol. v.52 Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil. Davidson, E.A.;W.T. Swank;T.O. Perry.
  4. Microbial Production and Consumption of Greenhous Gases. Fluxes of nitrous oxide and nitric oxide from terrestrial exosystems. Davidson, E.A.
  5. Nature v.409 Nitrogen limitation of decomposition in grassland under elevated CO₂ Hu, S.;F.S. Chapin Ⅲ;M.K. Firestone;C.B. Field;N.R. Chiariello.
  6. Funct. Ecol. v.5 Response of CO₂enrichment in 27 herbaceous species. Hunt, R.;D.W. Hand;M.A. Hannah;A.M. Neal
  7. Global Change Biol. v.1 Elevated concentration of CO₂may double methane emissions from mires. Hutchin, P.R.;M.C. Press;J.A. Lee;T.W. Ashenden
  8. Climate Change 1995: the Science of Climate Change. IPCC(Intergovernmental Panel on Climate Change)
  9. Soil Biol. Biochem. v.31 Phosphatase and arylsulphatase activities in wetland soils - Annual variation and controlling factors. Kang, H.;C. Freeman.
  10. Sci. Total Environ. v.279 Effects of elevated CO₂on fen peat biogechemistry. Kang, H.;C. Freeman;T.W. Ashenden.
  11. Biogeochemistry v.37 Enhanced CH₄emissions from a wetland soil exposed to elevated CO₂. Megonigal, J.P.;W.H. Schlesinger.
  12. Appl. Environ. Microbiol. v.58 Evaluation of methyl-fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Oremland, R.S.;C.W. Culbertson.
  13. Soil Sci. Soc. Am. J. v.43 Direct measurement of denitrification loss from soils. I. Laboratory evaluation of acetylene inhibition of nitrous oxide reductase. Ryden, J.C.;L.J. Lund;D.D. Focht.
  14. Soil Sci. Soc. Am. J. v.60 Determination of methane oxidation in the rhizosphere of Sagittaria lancifolia using methyl fluoride. Schipper, L.A.;K.R. Reddy.
  15. Appl. Environ. Microbiol. v.63 Evidence that elevated CO₂levels can indirectly increase rhizosphere denitrifier activity. Smart, D.R.;K. Ritchie;J.M. Stark;B. Bugbee
  16. Global Change Biol. v.4 Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. Ziska, L.H.;T.B. Moya;R. Wassmann;O.S. Namuco;R.S. Lantin;J.B. Aduna;E. Abao;K.F. Bronson;H.U. Neue;D. Olszyk.