JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **13**, No.2, December 2000

ON AN INTERIOR METRIC SPACE

Moonjeong Kim

ABSTRACT. In this paper, we present the proof of the property for interior metric space and geodesic space.

1. Introduction

Alexandrov space is a locally compact and complete space with an interior metric and curvature bounded above or below κ and introduced by A. D. Alexandrov. The Busemann *G*-space are special Alexandrov spaces admitting geodesic completeness, where the notion of curvature bounded above or below are defined by a similar manner. The most important problem discussed by these pioneers was if the differentiability assumption in Riemannian results is really essential. Now, many geometers focuss on this viewpoint and study a metric space. Alexandrov space is determined by a given curvature κ . Then the curvature depends completely on the metric. Therefore the geometric objects as length, area, angle, and volume etc. are determined by a given metric. Specially, the all metrics are *interior* metric. An *interior* metric space is one in which the distance between any two points is the infimum of the length of curves joining them, where curvelength is defined as usual ; the terms *inner* and *tight* have also been used. *Geodesic space* were first considered by Alexandrov[2], who defined upper curvature bounds for such spaces and gave a development method for transforming local curvature bounds into global ones.

Received by the editors on December 2, 2000.

¹⁹⁹¹ Mathematics Subject Classifications : 51K05.

Key words and phrases: interior metric, geodesic space, bipartite graph.

MOONJEONG KIM

In this paper, we prove the theorem for interior metric space and survey the property of a main example called *bipartite graph*. These tell us the property of interior metric space.

2. Interior metric

DEFINITION 1. A metric on a set X is said to be interior if for every $x, y \in X$ and for each $\epsilon > 0$ there exists an ϵ – midpointz between xand y, that is

$$|xz|, |zy| \le \frac{1}{2}|xy| + \epsilon.$$

In other words, $B_x(\frac{1}{2} + \epsilon) \cap B_y(\frac{1}{2} + \epsilon) \neq \emptyset$.

DEFINITION 2. The dilatation of a map $f: X \to Y$ of metric spaces is defined to be

$$dil(f) = sup_{x \neq y} \left| \frac{|f(x)f(y)|}{|xy|} \right|.$$

The dilatation at $x \in X$ is defined to be

$$dil_x(f) = \lim_{\epsilon \to 0} dil(f|_{B_{\epsilon}(x)}).$$

LEMMA 1. For every x, y in a space X with an interior metric and for each $\delta > 0$, there exists a map

$$z: \{ dyadic rationals in [0,1] \} \rightarrow X$$

with properties

(1) z(0) = x, z(1) = y(2) $|z(\frac{k}{2^n})z(\frac{k+1}{2^n})| \le \frac{1}{2^n}(|xy| + \delta)$, for all $n \ge 1$ and for all $k = 0, \dots, 2^n - 1$.

Proof. We use an induction method. We put (1) and assume that z is already defined on rationals $\frac{k}{2^{n-1}}, k = 0, \dots, 2^{n-1}$ with a condition stronger than (2).

82

Then we have

$$|z(\frac{k}{2^{n-1}})z(\frac{k+1}{2^{n-1}})| \le \frac{1}{2^{n-1}}\{(|xy|+\delta(\frac{1}{2}+\frac{1}{2^2}+\dots+\frac{1}{2^{n-1}})\}.$$

For $k = 0, \dots, 2^{n-1} - 1$, we can find $z(\frac{2k+1}{2^n})$ such that

$$\begin{aligned} |z(\frac{k}{2^{n-1}})z(\frac{2k+1}{2^n})| &\leq \frac{1}{2}|z(\frac{k}{2^{n-1}})z(\frac{k+1}{2^{n-1}})| + \frac{\delta}{2^{2n}}, \\ |z(\frac{2k+1}{2^n})z(\frac{k+1}{2^{n-1}})| &\leq \frac{1}{2}|z(\frac{k}{2^{n-1}})z(\frac{k+1}{2^{n-1}})| + \frac{\delta}{2^{2n}}. \end{aligned}$$

But, $\frac{1}{2}|z(\frac{k}{2^{n-1}})z(\frac{2k+1}{2^{n-1}})| + \frac{\delta}{2^{2n}} \leq \frac{1}{2^n}(|xy| + \delta(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}).$ Hence,

$$\begin{aligned} |z(\frac{k}{2^{n-1}})z(\frac{2k+1}{2^n})| &\leq \frac{1}{2^n}(|xy|+\delta'), \\ |z(\frac{2k+1}{2^n})z(\frac{k+1}{2^{n-1}})| &\leq \frac{1}{2^n}(|xy|+\delta'). \end{aligned}$$

REMARK 1. Above lemma is very useful in a construction method when we deal with interior metric space. This lemma tells us as follows ; Although we cannot take a midpoint exactly, an interior metric is sufficiently complementary.

Also, this reflects the property of an interior metric to be local.

THEOREM 1. For a interior metric on X we have

$$dil(f) = sup_{x \in X} dil_x(f).$$

Proof. Assume that $x \neq y$ and $\delta > 0$. Since X has an interior metric, there is a function z satisfying (1),(2) in lemma. For k = 0, $|xz(\frac{1}{2^n})| \leq \frac{1}{2^n}(|xy| + \delta)$, for all $n \geq 1$. Thus for some $\epsilon > 0$, $z(\frac{1}{2^n}) \in B_{\frac{1}{2^n}(|xy|+\delta+\epsilon)}(x)$ and

$$(1)\frac{|f(x)f(y)|}{|xy|} \le \frac{|f(x)f(y)|}{2^n|xz(\frac{1}{2^n})| - \delta}, \text{ for fixed } n \ge 1 \text{ and any } \delta > 0.$$

We take a δ such that

(2)
$$\delta \leq \frac{2\{|f(x)f(z(\frac{1}{2^n}))| - |f(x)f(y)|\} \cdot |xz(\frac{1}{2^n})|}{|f(x)f(z(\frac{1}{2^n}))|}$$

We can assume that

$$\begin{aligned} |f(x)f(z(\frac{1}{2^n}))| &= \max\{|f(z(\frac{k}{2^n}))f(z(\frac{k+1}{2^n}))|, k = 1, \cdots, 2^n - 1\} \text{ and} \\ |f(x)f(y)| &\leq |f(x)f(z(\frac{1}{2^n}))| + \cdots + |f(z(\frac{2^n - 1}{2^n}))y| \\ &\leq n \cdot \max\{|f(z(\frac{k}{2^n}))f(z(\frac{k+1}{2^n}))|, k = 0, \cdots, 2^n - 1\} \end{aligned}$$

In (1), substitution δ for δ in (2) provides

$$\frac{|f(x)f(y)|}{|xy|} \le \frac{|f(x)f(z(\frac{1}{2^n}))|}{|xz(\frac{1}{2^n})|}.$$

If we continue above procedure, then we have

$$\frac{|f(x)f(y)|}{|xy|} \leq \lim_{n \to \infty} dil(f|_{B_{\frac{1}{2^n}(|xy|+\delta+\epsilon)}}(x)), \text{ for sufficiently small } \delta > 0.$$

Therefore,

$$dil(f) = sup_{x \neq y} \frac{|f(x)f(y)|}{|xy|}$$

$$\leq sup_{x \in X} \lim_{n \to \infty} dil(f|_{B_{\frac{1}{2^n}(|xy|+\delta+\epsilon)}}(x))$$

$$= sup_{x \in X} dil_x(f).$$

 $dil(f) \ge sup_{x \in X} dil_x(f)$ is trivial by the definition.

3. Geodesic space

DEFINITION 3. A metric on X is said to be strictly interior if every $x, y \in X$ posses a midpoint z, that is,

$$|xz| = |zy| = \frac{1}{2}|xy|.$$

DEFINITION 4. A geodesic in a metric space X is a locally-homothetic map $\gamma: D \to X$, that is, for some $v \ge 0$ every $t \in D$ possesses a neighborhood $U \subset D$ such that

$$|\gamma(t')\gamma(t'')| = v|t' - t''|, \text{ for all } t', t'' \in U.$$

If one can take U = D then the geodesic γ is said to be minimizer.

DEFINITION 5. A metric space X is called geodesic if every two points in X can be connected by a minimizer.

We can show that a geodesic X contains a shortest curve between any two points. A complete interior space is geodesic if it is compact[5], but might not be otherwise.

Example. Let X be a graph with two vertices and edges $e_n, n \ge 1$, between them such that the length of e_n is equal to $1 + \frac{1}{n}$. This space is called *bipartite graph*. Define the interior d on X by $d(a, b) = inf_{\gamma}L(\gamma)$, where $L(\gamma)$ is the length of γ and the infimum is taken over all graph γ connecting a and b. Then X is complete but not locally compact. Furthermore, X is not geodesic.

Proof. Let (X_n) be a Cauchy sequence on X as above metric. Then (X_n) is one of two cases. First, for a sufficiently large $n \ge N$, X_n are dense on an edge e_i , since the lengh of a path e_i crossing a vertex cannot be less than ϵ . Hence, Cauchy sequence converges. Secondly, (X_n) goes to each vertex. This Cauchy sequence converges to each vertex. Hence, X is complete. Since two vertices x, y cannot be covered by finite sets, X is not locally compact at each vertex. X contains a pair of points (two vertices) not joined by a shortest curve. Therfore, X is not geodesic.

THEOREM 2. If X is complete and strictly interior, then it is geodesic.

MOONJEONG KIM

Proof. Since X is strictly interior, there is a map

 $\gamma: \{ \text{ dyadic rationals in } [0,1] \} \to X$

such that for every pairs $x, y \in X$

(1)
$$\gamma(0) = x, \gamma(1) = y$$

(2)
$$|\gamma(\frac{k}{2^n})\gamma(\frac{k+1}{2^n})| = \frac{1}{2^n}|xy|$$
, for all $n \ge 1$ and for all $k = 0, \cdots, 2^n - 1$.

Extend γ to a continuous map $\gamma':[0,1]\to X$ by

$$\gamma'(t) = \begin{cases} \gamma(t), & \text{if } t \text{ is a dyadic rational} \\ \lim \gamma(t_i), & \text{if } t \text{ is not a dyadic rational} \end{cases}$$

where $\{t_i\}$ is a sequence of dyadic rationals converging to y.

Then γ' is a minimizer connecting x and y.

References

- 1. S. B. Alexander and R. L. Bishop, The Hadamard-Cartan theorem in locally convex metric spaces, *Enseign. Math.*, 36(1990), 309-320.
- A. D. Alexandrov A theorem on triangles in a metric space and some of its applications, *Trudy Math. Inst. Steks.*, 38(1951), 5-23.
- W. Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar. Band 25, Basel ,Birkhäuser ,1995.
- 4. W. Ballmann, M. Gromov, and V. Schroeder, *Manifolds of nonpositive curvature*, Birkhäuser, Boston, Basel, 1990.
- 5. H. Busemann, *The Geometry of Geodesics*, Academic Press, New York, San Francisco, London, 1955.
- 6. S. Buyalo, Lectures on spaces of curvature bounded above, preprint

DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY UNIVERSITY SUWON 440-746, KOREA *E-mail*: kmj@math.skku.ac.kr

86