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ON AN INTERIOR METRIC SPACE

Moonjeong Kim

Abstract. In this paper, we present the proof of the property for
interior metric space and geodesic space.

1. Introduction

Alexandrov space is a locally compact and complete space with an

interior metric and curvature bounded above or below κ and introduced
by A. D. Alexandrov. The Busemann G-space are special Alexandrov

spaces admitting geodesic completeness, where the notion of curvature

bounded above or below are defined by a similar manner. The most

important problem discussed by these pioneers was if the differentia-

bility assumption in Riemannian results is really essential. Now, many

geometers focuss on this viewpoint and study a metric space. Alexan-

drov space is determined by a given curvature κ. Then the curvature

depends completely on the metric. Therefore the geometric objects as

length, area, angle, and volume etc. are determined by a given metric.

Specially, the all metrics are interior metric. An interior metric space

is one in which the distance between any two points is the infimum of

the lenghs of curves joining them, where curvelengh is defined as usual

; the terms inner and tight have also been used. Geodesic space were

first considered by Alexandrov[2], who defined upper curvature bounds

for such spaces and gave a development method for transforming local

curvature bounds into global ones.
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In this paper, we prove the theorem for interior metric space and

survey the property of a main example called bipartite graph. These

tell us the property of interior metric space.

2. Interior metric

Definition 1. A metric on a set X is said to be interior if for every

x, y ∈ X and for each ε > 0 there exists an ε − midpointz between

xand y, that is

|xz|, |zy| ≤ 1

2
|xy|+ ε.

In other words, Bx(
1
2

+ ε) ∩By(
1
2

+ ε) 6= ∅.

Definition 2. The dilatation of a map f : X → Y of metric spaces

is defined to be

dil(f) = supx6=y| |f(x)f(y)|
|xy| .

The dilatation at x ∈ X is defined to be

dilx(f) = lim
ε→0

dil(f |Bε(x)).

Lemma 1. For every x, y in a space X with an interior metric and

for each δ > 0, there exists a map

z : { dyadic rationals in [0, 1]} → X

with properties

(1) z(0) = x, z(1) = y

(2) |z( k
2n )z(k+1

2n )| ≤ 1
2n (|xy|+ δ), for all n ≥ 1

and for all k = 0, · · · , 2n − 1.

Proof. We use an induction method. We put (1) and assume that

z is already defined on rationals k
2n−1 , k = 0, · · · , 2n−1 with a condition

stronger than (2).
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Then we have

|z(
k

2n−1
)z(

k + 1

2n−1
)| ≤ 1

2n−1
{(|xy|+ δ(

1

2
+

1

22
+ · · ·+ 1

2n−1
)}.

For k = 0, · · · , 2n−1 − 1, we can find z(2k+1
2n ) such that

|z(
k

2n−1
)z(

2k + 1

2n
)| ≤ 1

2
|z(

k

2n−1
)z(

k + 1

2n−1
)|+ δ

22n
,

|z(
2k + 1

2n
)z(

k + 1

2n−1
)| ≤ 1

2
|z(

k

2n−1
)z(

k + 1

2n−1
)|+ δ

22n
.

But, 1
2
|z( k

2n−1 )z(2k+1
2n−1 )|+ δ

22n ≤ 1
2n (|xy|+ δ(1

2
+ 1

22 + · · ·+ 1
2n ).

Hence,

|z(
k

2n−1
)z(

2k + 1

2n
)| ≤ 1

2n
(|xy|+ δ′),

|z(
2k + 1

2n
)z(

k + 1

2n−1
)| ≤ 1

2n
(|xy|+ δ′).

Remark 1. Above lemma is very useful in a construction method

when we deal with interior metric space. This lemma tells us as follows

; Although we cannot take a midpoint exactly, an interior metric is

sufficiently complementary.

Also, this reflects the property of an interior metric to be local.

Theorem 1. For a interior metric on X we have

dil(f) = supx∈Xdilx(f).

Proof. Assume that x 6= y and δ > 0. Since X has an interior metric,

there is a function z satisfying (1),(2) in lemma.

For k = 0, |xz( 1
2n )| ≤ 1

2n (|xy|+ δ), for all n ≥ 1.

Thus for some ε > 0, z( 1
2n ) ∈ B 1

2n (|xy|+δ+ε)(x) and

|f(x)f(y)|
|xy| ≤ |f(x)f(y)|

2n|xz( 1
2n )| − δ

, for fixed n ≥ 1 and any δ > 0.(1)
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We take a δ such that

δ ≤ 2{|f(x)f(z( 1
2n ))| − |f(x)f(y)|} · |xz( 1

2n )|
|f(x)f(z( 1

2n ))|(2)

We can assume that

|f(x)f(z( 1
2n ))| = max{|f(z( k

2n ))f(z(k+1
2n ))|, k = 1, · · · , 2n − 1} and

|f(x)f(y)| ≤ |f(x)f(z(
1

2n
))|+ · · ·+ |f(z(

2n − 1

2n
))y|

≤ n ·max{|f(z(
k

2n
))f(z(

k + 1

2n
))|, k = 0, · · · , 2n − 1}

In (1), substitution δ for δ in (2) provides

|f(x)f(y)|
|xy| ≤ |f(x)f(z( 1

2n ))|
|xz( 1

2n )| .

If we continue above procedure, then we have

|f(x)f(y)|
|xy| ≤ lim

n→∞
dil(f |B 1

2n (|xy|+δ+ε)
(x)), for sufficiently small δ > 0.

Therefore,

dil(f) = supx 6=y
|f(x)f(y)|
|xy|

≤ supx∈X lim
n→∞

dil(f |B 1
2n (|xy|+δ+ε)

(x))

= supx∈Xdilx(f).

dil(f) ≥ supx∈Xdilx(f) is trivial by the definition.

3. Geodesic space

Definition 3. A metric on X is said to be strictly interior if every

x, y ∈ X posses a midpoint z, that is,

|xz| = |zy| = 1

2
|xy|.
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Definition 4. A geodesic in a metric space X is a locally-homothetic

map γ : D → X, that is, for some v ≥ 0 every t ∈ D possesses a neigh-

borhood U ⊂ D such that

|γ(t′)γ(t
′′
)| = v|t′ −t ′′|, for all t′, t

′′ ∈ U.

If one can take U = D then the geodesic γ is said to be minimizer.

Definition 5. A metric space X is called geodesic if every two

points in X can be connected by a minimizer.

We can show that a geodesic X contains a shortest curve between

any two points. A complete interior space is geodesic if it is compact[5],

but might not be otherwise.

Example. Let X be a graph with two vertices and edges en, n ≥ 1,

between them such that the length of en is equal to 1+ 1
n
. This space is

called bipartite graph. Define the interior d on X by d(a, b) = infγL(γ),

where L(γ) is the length of γ and the infimum is taken over all graph

γ connecting a and b. Then X is complete but not locally compact.

Furthermore, X is not geodesic.

Proof. Let (Xn) be a Cauchy sequence on X as above metric. Then

(Xn) is one of two cases. First, for a sufficiently large n ≥ N , Xn are

dense on an edge ei, since the lengh of a path ei crossing a vertex cannot

be less than ε. Hence, Cauchy sequence converges. Secondly, (Xn) goes

to each vertex. This Cauchy sequence converges to each vertex. Hence,

X is complete. Since two vertices x, y cannot be covered by finite

sets, X is not locally compact at each vertex. X contains a pair of

points (two vertices) not joined by a shortest curve. Therfore, X is not

geodesic.

Theorem 2. If X is complete and strictly interior, then it is geo-

desic.
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Proof. Since X is strictly interior, there is a map

γ : { dyadic rationals in [0, 1]} → X

such that for every pairs x, y ∈ X

(1) γ(0) = x, γ(1) = y

(2) |γ(
k

2n
)γ(

k + 1

2n
)| = 1

2n
|xy|, for all n ≥ 1 and for all k = 0, · · · , 2n − 1.

Extend γ to a continuous map γ′ : [0, 1] → X by

γ′(t) =

{
γ(t), if t is a dyadic rational
lim γ(ti), if t is not a dyadic rational

where {ti} is a sequence of dyadic rationals converging to y.

Then γ′ is a minimizer connecting x and y.
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