R-MAPS AND L-MAPS IN BH-ALGEBRAS

SUN SHIN AHN AND HEE SIK KIM

ABSTRACT. In this paper, we introduce the notion of positive implicative BH-algebras and study some relations between R - (L-) maps and positive implicativity in BH-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([2, 3, 4]). It is known that the class of *BCK*-algebras is a proper subclass of the class of *BCI*-algebras. In [1] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. BCK-algebras have some connections with other areas: D. Mundici ([8]) proved that MV-algebras are categorically equivalent to bounded commutative BCK-algebras, and J. Meng ([6]) proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. In [5], Y. B. Jun, E. H. Roh and H. S. Kim introduced the new notion, called an BH-algebra, which is a generalization of BCH/BCI/BCK-algebras. They defined the notions of ideals and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded BH-algebras. Furthermore, they constructed the quotient BH-algebras via translation ideals and obtained the fundamental theorem of homomorphisms

Received by the editors on November 6, 2000.

 $^{1991\} Mathematics\ Subject\ Classifications:\ 06F35,\ 03G25..$

Key words and phrases: positive implicative BH-algebra, R - (L-) maps, homomorphism.

for BH-algebras as a consequence. In this paper, we introduce the notion of positive implicative BH-algebras and study some relations between R - (L-) maps and positive implicativity in BH-algebras.

2. BH-algebras

In 1983, Q. P. Hu and X. Li ([1]) introduced a very interesting class of algebras, called a *BCH*-algebra. An algebra (X; *, 0) of type (2,0) with the following axioms: for all $x, y, z \in X$,

$$(1) \qquad x * x = 0,$$

(2)
$$(x * y) * z = (x * z) * y,$$

(3)
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$.

is called a $BCH\mathchar`algebra$. It is well known that for any $BCH\mathchar`algebra X$

(4) x * 0 = x for all $x \in X$.

DEFINITION 2.1. ([5]) By a *BH*-algebra, we mean an algebra (X; *, 0) of type (2,0) satisfying the conditions (1), (3) and (4).

EXAMPLE 2.2. ([5]) (a) Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then (X; *, 0) is a *BH*-algebra.

(b) Let \mathbb{R} be the set of all real numbers and define

$$x * y := \begin{cases} 0 & \text{if } x = 0, \\ \frac{(x-y)^2}{x} & \text{otherwise,} \end{cases}$$

for all $x, y \in \mathbb{R}$, where "-" is the usual substraction of real numbers. Then $(\mathbb{R}; *, 0)$ is a *BH*-algebra.

Let X and Y be BH-algebras. A mapping $f: X \to Y$ is called a homomorphism if f(x * y) = f(x) * f(y) for any $x, y \in X$. A homomorphism f is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and Y are said to be isomorphic, written $X \cong Y$, if there exists an isomorphism $f: X \to Y$. For any homomorphism $f: X \to Y$, the set $\{x \in X | f(x) = 0\}$ is called the kernel of f, denoted by Ker(f), and the set $\{f(x) | x \in X\}$ is called the image of f, denoted by Im(f). Notice that f(0) = 0 for any homomorphism f.

3. *R*-maps and *L*-maps in *BH*-algebras

In this section, we define R-maps and L-maps in BH-algebras and investigate several properties in BH-algebras.

DEFINITION 3.1. Let X be a BH-algebra. For a fixed $a \in X$, we define a map $R_a : X \to X$ such that $R_a(x) := x * a$ for all $x \in X$, and call R_a a right map on X. The set of all right maps on X is denoted by $\mathbb{R}(X)$. A left map is defined by a similar way, and the set of all left maps on X is denoted by $\mathbb{L}(X)$.

DEFINITION 3.2. A right map R_a is said to be *idempotent* if $R_a \circ R_a = R_a$, i.e., (x * a) * a = x * a for all $x \in X$.

DEFINITION 3.3. A BH-algebra (X; *, 0) is said to be positive implicative if it satisfies for all x, y and $z \in X$,

$$(x * z) * (y * z) = (x * y) * z.$$

EXAMPLE 3.4. Let $X := \{0, a, b, 1\}$ be a set with the following table:

*	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	1	1	0

Then (X; *, 0) is a positive implicative BH-algebra.

LEMMA 3.5. Let X := (X; *, 0) be a BH-algebra. If X is positive implicative, then the following condition holds:

$$(x * y) = (x * y) * y$$
 for any $x, y \in X$.

Proof. For any $x, y \in X$, x * y = (x * y) * 0 = (x * y) * (y * y) = (x * y) * y, since X is positive implicative. This completes the proof. \Box

THEOREM 3.6. If a BH-algebra X is positive implicative, then every right map on X is idempotent.

Proof. Since X is positive implicative, x * y = (x * y) * y for any $x, y \in X$, by Lemma 3.5. Hence $R_y(x) = (R_y \circ R_y)(x)$ and so $R_y = R_y \circ R_y$ for any $y \in X$.

The converse of Theorem 3.6 need not be true in BH-algebras.

EXAMPLE 3.7. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	1	0

Then (X; *, 0) is a *BH*-algebra which is not a *BCK*-algebra. Since X satisfies (x * y) * y = (x * y) for any $x, y \in X$, every right map on X is idempotent. But X is not positive implicative, since (3 * 1) * 2 = $3 \neq 0 = 1 * 1 = (3 * 2) * (1 * 2).$

THEOREM 3.8. A BH-algebra X is positive implicative if and only if every right map on X is an endomorphism of X.

Proof. If X is a positive implicative BH-algebra, then for each $a \in X$, (x * y) * a = (x * a) * (y * a), i.e., $R_a(x * y) = R_a(x) * R_a(y)$. Hence R_a is an endomorphism. The converse follows immediately. The proof is complete.

PROPOSITION 3.9. Let $f : X \to Y$ be a homomorphism of BHalgebras. Then f is injective if and only if $Ker f = \{0\}$.

Proof. Straightforward.

THEOREM 3.10. If L_x is a homomorphism, $x \in X$, then x = 0.

Proof. For any $x \in X$, we have

$$x = x * 0 = L_x(0) = L_x(0 * 0) = L_x(0) * L_x(0) = 0.$$

The converse of Theorem 3.10 need not be true in *BH*-algebras in general. In Example 2.2, $L_0(1 * 3) = 0 * (1 * 3) = 0 * 0 = 0$ and $L_0(1) * L_0(3) = (0 * 1) * (0 * 3) = 3 * 2 = 1$. Hence $L_0(1 * 3) \neq L_0(1) * L_0(3)$. Thus L_0 is not a homomorphism.

For a positive implicative BH-algebra X, we define an operation \circledast in $\mathbb{L}(X)$ as follows. For any $L_a, L_b \in \mathbb{L}(X)$ and any $x \in X$,

$$(L_a \circledast L_b)(x) := L_a(x) * L_b(x).$$

Using positive implicativity of X, we know

$$(L_a \circledast L_b)(x) = (a * x) * (b * x) = (a * b) * x = L_{a * b}(x),$$

so $L_a \circledast L_b \in \mathbb{L}(X)$.

The next theorem gives a characterization of a positive implicative BH-algebra by its left maps.

THEOREM 3.11. If X is a positive implicative BH-algebra, then $\mathbb{L}(X)$ is a positive implicative BH-algebra and X is isomorphic to $\mathbb{L}(X)$.

Proof. For any $x \in X$, by positive implicativity of X we have

$$((L_a \circledast L_b) \circledast L_c)(x) = ((a * x) * (b * x)) * (c * x)$$

=((a * x) * (c * x)) * ((b * x) * (c * x))
=((L_a \circledast L_c)(x)) * ((L_b \circledast L_c)(x))
=((L_a \circledast L_c) \circledast (L_b \circledast L_c))(x)

which means

$$(L_a \circledast L_b) \circledast L_c = (L_a \circledast L_c) \circledast (L_b \circledast L_c).$$

It is easy to check that $(\mathbb{L}(X); \circledast, L_0)$ is a *BH*-algebra. Therfore it is a positive implicative *BH*-algebra. Next, we show that a map $f: X \to \mathbb{L}(X)$ defined by $f(x) := L_x$ is an isomorphism. Suppose that f(x) = f(y), i.e., $L_x = L_y$ and so for any $t \in X$, $L_x(t) = L_y(t)$ and hence x * t = y * t. If we put t = y, then x * y = y * y = 0. Similarly, y * x = 0. Since X is a *BH*-algebra, x = y. This means that f is injective. Clearly f is also surjective. Since for any $t \in X$, $f(x * y)(t) = L_{x*y}(t) = (x * y) * t = (x * t) * (y * t) = L_x(t) * L_y(t) =$ $(L_x \circledast L_y)(t) = (f(x) \circledast f(y))(t)$. It follows that f is a homomorphism. This proves the theorem.

References

- Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
- Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 26-29.
- [3] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematicae 1 (1998), 347-354.
- J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum 50 (1995), 89-96.
- [7] J. Meng and Y. B. Jun, *BCK-algebras*, Kyung Moon Sa Co., Seoul, 1994.
- [8] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica **31** (1986), 889-894.

DEPARTMENT OF MATHEMATICS EDUCATION DONGGUK UNIVERSITY SEOEL 100-751, KOREA

E-mail: sunshine@dgu.ac.kr

DEPARTMENT OF MATHEMATICS HANYANG UNIVERSITY SEOEL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr