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R–MAPS AND L–MAPS IN BH–ALGEBRAS

Sun Shin Ahn and Hee Sik Kim

Abstract. In this paper, we introduce the notion of positive im-
plicative BH-algebras and study some relations between R − (L−)
maps and positive implicativity in BH-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras:

BCK-algebras and BCI-algebras ([2, 3, 4]). It is known that the class

of BCK-algebras is a proper subclass of the class of BCI-algebras.

In [1] Q. P. Hu and X. Li introduced a wide class of abstract algebras:

BCH-algebras. They have shown that the class of BCI-algebras is a

proper subclass of the class of BCH-algebras. BCK-algebras have

some connections with other areas: D. Mundici ([8]) proved that

MV -algebras are categorically equivalent to bounded commutative

BCK-algebras, and J. Meng ([6]) proved that implicative commuta-

tive semigroups are equivalent to a class of BCK-algebras. In [5], Y.

B. Jun, E. H. Roh and H. S. Kim introduced the new notion, called an

BH-algebra, which is a generalization of BCH/BCI/BCK-algebras.

They defined the notions of ideals and boundedness in BH-algebras,

and showed that there is a maximal ideal in bounded BH-algebras.

Furthermore, they constructed the quotient BH-algebras via transla-

tion ideals and obtained the fundamental theorem of homomorphisms
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for BH-algebras as a consequence. In this paper, we introduce the

notion of positive implicative BH-algebras and study some relations

between R− (L−) maps and positive implicativity in BH-algebras.

2. BH-algebras

In 1983, Q. P. Hu and X. Li ([1]) introduced a very interesting class

of algebras, called a BCH-algebra. An algebra (X; ∗, 0) of type (2,0)

with the following axioms: for all x, y, z ∈ X,

(1) x ∗ x = 0,

(2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(3) x ∗ y = 0 and y ∗ x = 0 imply x = y,

is called a BCH-algebra. It is well known that for any BCH-algebra

X

(4) x ∗ 0 = x for all x ∈ X.

Definition 2.1. ([5]) By a BH-algebra, we mean an algebra (X; ∗, 0)

of type (2,0) satisfying the conditions (1), (3) and (4).

Example 2.2. ([5]) (a) Let X := {0, 1, 2, 3} be a set with the follow-

ing table:

* 0 1 2 3
0 0 3 0 2
1 1 0 0 0
2 2 2 0 3
3 3 3 1 0

Then (X; ∗, 0) is a BH-algebra.

(b) Let R be the set of all real numbers and define

x ∗ y :=

{
0 if x = 0,
(x−y)2

x otherwise,
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for all x, y ∈ R, where “−” is the usual substraction of real numbers.

Then (R; ∗, 0) is a BH-algebra.

Let X and Y be BH-algebras. A mapping f : X → Y is called

a homomorphism if f(x ∗ y) = f(x) ∗ f(y) for any x, y ∈ X. A ho-

momorphism f is called a monomorphism (resp., epimorphism) if it

is injective (resp., surjective). A bijective homomorphism is called an

isomorphism. Two BH-algebras X and Y are said to be isomorphic,

written X ∼= Y , if there exists an isomorphism f : X → Y . For any

homomorphism f : X → Y , the set {x ∈ X|f(x) = 0} is called the

kernel of f , denoted by Ker(f), and the set {f(x)|x ∈ X} is called

the image of f , denoted by Im(f). Notice that f(0) = 0 for any

homomorphism f .

3. R-maps and L-maps in BH-algebras

In this section, we define R-maps and L-maps in BH-algebras and

investigate several properties in BH-algebras.

Definition 3.1. Let X be a BH-algebra. For a fixed a ∈ X, we

define a map Ra : X → X such that Ra(x) := x ∗a for all x ∈ X, and

call Ra a right map on X. The set of all right maps on X is denoted

by R(X). A left map is defined by a similar way, and the set of all

left maps on X is denoted by L(X).

Definition 3.2. A right map Ra is said to be idempotent if Ra◦Ra =

Ra, i.e., (x ∗ a) ∗ a = x ∗ a for all x ∈ X.

Definition 3.3. A BH-algebra (X; ∗, 0) is said to be positive im-

plicative if it satisfies for all x, y and z ∈ X,

(x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z.
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Example 3.4. Let X := {0, a, b, 1} be a set with the following table:

* 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 1 1 0

Then (X; ∗, 0) is a positive implicative BH-algebra.

Lemma 3.5. Let X := (X; ∗, 0) be a BH-algebra. If X is positive

implicative, then the following condition holds:

(x ∗ y) = (x ∗ y) ∗ y for any x, y ∈ X.

Proof. For any x, y ∈ X, x∗y = (x∗y)∗0 = (x∗y)∗(y∗y) = (x∗y)∗y,

since X is positive implicative. This completes the proof. ¤

Theorem 3.6. If a BH-algebra X is positive implicative, then

every right map on X is idempotent.

Proof. Since X is positive implicative, x ∗ y = (x ∗ y) ∗ y for any

x, y ∈ X, by Lemma 3.5. Hence Ry(x) = (Ry ◦ Ry)(x) and so Ry =

Ry ◦Ry for any y ∈ X. ¤

The converse of Theorem 3.6 need not be true in BH-algrbras.

Example 3.7. Let X := {0, 1, 2, 3} be a set with the following table:

* 0 1 2 3
0 0 0 0 0
1 1 0 1 1
2 2 2 0 2
3 3 3 1 0
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Then (X; ∗, 0) is a BH-algebra which is not a BCK-algebra. Since

X satisfies (x ∗ y) ∗ y = (x ∗ y) for any x, y ∈ X, every right map on

X is idempotent. But X is not positive implicative, since (3 ∗ 1) ∗ 2 =

3 6= 0 = 1 ∗ 1 = (3 ∗ 2) ∗ (1 ∗ 2).

Theorem 3.8. A BH-algebra X is positive implicative if and only

if every right map on X is an endomorphism of X.

Proof. If X is a positive implicative BH-algebra, then for each

a ∈ X, (x ∗ y) ∗ a = (x ∗ a) ∗ (y ∗ a), i.e., Ra(x ∗ y) = Ra(x) ∗ Ra(y).

Hence Ra is an endomorphism. The converse follows immediately.

The proof is complete. ¤

Proposition 3.9. Let f : X → Y be a homomorphism of BH-

algebras. Then f is injective if and only if Kerf = {0}.
Proof. Straightforward. ¤

Theorem 3.10. If Lx is a homomorphism, x ∈ X, then x = 0.

Proof. For any x ∈ X, we have

x = x ∗ 0 = Lx(0) = Lx(0 ∗ 0) = Lx(0) ∗ Lx(0) = 0.

¤

The converse of Theorem 3.10 need not be true in BH-algebras

in general. In Example 2.2, L0(1 ∗ 3) = 0 ∗ (1 ∗ 3) = 0 ∗ 0 = 0 and

L0(1) ∗ L0(3) = (0 ∗ 1) ∗ (0 ∗ 3) = 3 ∗ 2 = 1. Hence L0(1 ∗ 3) 6=
L0(1) ∗ L0(3). Thus L0 is not a homomorphism.

For a positive implicative BH-algebra X, we define an operation

~ in L(X) as follows. For any La, Lb ∈ L(X) and any x ∈ X,

(La ~ Lb)(x) := La(x) ∗ Lb(x).
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Using positive implicativity of X, we know

(La ~ Lb)(x) = (a ∗ x) ∗ (b ∗ x) = (a ∗ b) ∗ x = La∗b(x),

so La ~ Lb ∈ L(X).

The next theorem gives a characterization of a positive implicative

BH-algebra by its left maps.

Theorem 3.11. If X is a positive implicative BH-algebra, then

L(X) is a positive implicative BH-algebra and X is isomorphic to

L(X).

Proof. For any x ∈ X, by positive implicativity of X we have

((La ~ Lb) ~ Lc)(x) =((a ∗ x) ∗ (b ∗ x)) ∗ (c ∗ x)

=((a ∗ x) ∗ (c ∗ x)) ∗ ((b ∗ x) ∗ (c ∗ x))

=((La ~ Lc)(x)) ∗ ((Lb ~ Lc)(x))

=((La ~ Lc) ~ (Lb ~ Lc))(x)

which means

(La ~ Lb) ~ Lc = (La ~ Lc) ~ (Lb ~ Lc).

It is easy to check that (L(X); ~, L0) is a BH-algebra. Therfore it

is a positive implicative BH-algebra. Next, we show that a map

f : X → L(X) defined by f(x) := Lx is an isomorphism. Suppose

that f(x) = f(y), i.e., Lx = Ly and so for any t ∈ X, Lx(t) = Ly(t)

and hence x ∗ t = y ∗ t. If we put t = y, then x ∗ y = y ∗ y = 0.

Similarly, y ∗ x = 0. Since X is a BH-algebra, x = y. This means

that f is injective. Clearly f is also surjective. Since for any t ∈ X,

f(x ∗ y)(t) = Lx∗y(t) = (x ∗ y) ∗ t = (x ∗ t) ∗ (y ∗ t) = Lx(t) ∗ Ly(t) =

(Lx ~Ly)(t) = (f(x)~f(y))(t). It follows that f is a homomorphism.

This proves the theorem. ¤
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