R-MAPS AND L-MAPS IN $B H$-ALGEBRAS

Sun Shin Ahn and Hee Sik Kim

Abstract

In this paper, we introduce the notion of positive implicative $B H$-algebras and study some relations between $R-(L-)$ maps and positive implicativity in BH -algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ([2, 3, 4]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In [1] Q. P. Hu and X. Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. BCK -algebras have some connections with other areas: D. Mundici ([8]) proved that $M V$-algebras are categorically equivalent to bounded commutative $B C K$-algebras, and J. Meng ([6]) proved that implicative commutative semigroups are equivalent to a class of $B C K$-algebras. In [5], Y. B. Jun, E. H. Roh and H. S. Kim introduced the new notion, called an $B H$-algebra, which is a generalization of $B C H / B C I / B C K$-algebras. They defined the notions of ideals and boundedness in $B H$-algebras, and showed that there is a maximal ideal in bounded BH -algebras. Furthermore, they constructed the quotient BH -algebras via translation ideals and obtained the fundamental theorem of homomorphisms

Received by the editors on November 6, 2000.
1991 Mathematics Subject Classifications: 06F35, 03G25..
Key words and phrases: positive implicative $B H$-algebra, $R-(L-)$ maps, homomorphism.
for $B H$-algebras as a consequence. In this paper, we introduce the notion of positive implicative $B H$-algebras and study some relations between $R-(L-)$ maps and positive implicativity in $B H$-algebras.

2. $B H$-algebras

In 1983, Q. P. Hu and X. Li ([1]) introduced a very interesting class of algebras, called a BCH -algebra. An algebra $(X ; *, 0)$ of type $(2,0)$ with the following axioms: for all $x, y, z \in X$,
(1) $\quad x * x=0$,
(2) $(x * y) * z=(x * z) * y$,
(3) $x * y=0$ and $y * x=0$ imply $x=y$,
is called a $B C H$-algebra. It is well known that for any $B C H$-algebra X
(4) $\quad x * 0=x$ for all $x \in X$.

Definition 2.1. ([5]) By a $B H$-algebra, we mean an algebra $(X ; *, 0)$ of type (2,0) satisfying the conditions (1), (3) and (4).

Example 2.2. ([5]) (a) Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then $(X ; *, 0)$ is a $B H$-algebra.
(b) Let \mathbb{R} be the set of all real numbers and define

$$
x * y:= \begin{cases}0 & \text { if } x=0 \\ \frac{(x-y)^{2}}{x} & \text { otherwise }\end{cases}
$$

for all $x, y \in \mathbb{R}$, where "-" is the usual substraction of real numbers. Then $(\mathbb{R} ; *, 0)$ is a $B H$-algebra.

Let X and Y be $B H$-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism if $f(x * y)=f(x) * f(y)$ for any $x, y \in X$. A homomorphism f is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two $B H$-algebras X and Y are said to be isomorphic, written $X \cong Y$, if there exists an isomorphism $f: X \rightarrow Y$. For any homomorphism $f: X \rightarrow Y$, the set $\{x \in X \mid f(x)=0\}$ is called the kernel of f, denoted by $\operatorname{Ker}(f)$, and the set $\{f(x) \mid x \in X\}$ is called the image of f, denoted by $\operatorname{Im}(f)$. Notice that $f(0)=0$ for any homomorphism f.

3. R-maps and L-maps in $B H$-algebras

In this section, we define R-maps and L-maps in $B H$-algebras and investigate several properties in BH -algebras.

Definition 3.1. Let X be a $B H$-algebra. For a fixed $a \in X$, we define a map $R_{a}: X \rightarrow X$ such that $R_{a}(x):=x * a$ for all $x \in X$, and call R_{a} a right map on X. The set of all right maps on X is denoted by $\mathbb{R}(X)$. A left map is defined by a similar way, and the set of all left maps on X is denoted by $\mathbb{L}(X)$.

Definition 3.2. A right map R_{a} is said to be idempotent if $R_{a} \circ R_{a}=$ R_{a}, i.e., $(x * a) * a=x * a$ for all $x \in X$.

Definition 3.3. A $B H$-algebra $(X ; *, 0)$ is said to be positive implicative if it satisfies for all x, y and $z \in X$,

$$
(x * z) *(y * z)=(x * y) * z .
$$

Example 3.4. Let $X:=\{0, a, b, 1\}$ be a set with the following table:

$*$	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	1	1	0

Then $(X ; *, 0)$ is a positive implicative $B H$-algebra.

Lemma 3.5. Let $X:=(X ; *, 0)$ be a $B H$-algebra. If X is positive implicative, then the following condition holds:

$$
(x * y)=(x * y) * y \quad \text { for any } \quad x, y \in X
$$

Proof. For any $x, y \in X, x * y=(x * y) * 0=(x * y) *(y * y)=(x * y) * y$, since X is positive implicative. This completes the proof.

Theorem 3.6. If a $B H$-algebra X is positive implicative, then every right map on X is idempotent.

Proof. Since X is positive implicative, $x * y=(x * y) * y$ for any $x, y \in X$, by Lemma 3.5. Hence $R_{y}(x)=\left(R_{y} \circ R_{y}\right)(x)$ and so $R_{y}=$ $R_{y} \circ R_{y}$ for any $y \in X$.

The converse of Theorem 3.6 need not be true in BH -algrbras.
Example 3.7. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	1	0

Then $(X ; *, 0)$ is a $B H$-algebra which is not a $B C K$-algebra. Since X satisfies $(x * y) * y=(x * y)$ for any $x, y \in X$, every right map on X is idempotent. But X is not positive implicative, since $(3 * 1) * 2=$ $3 \neq 0=1 * 1=(3 * 2) *(1 * 2)$.

Theorem 3.8. A BH-algebra X is positive implicative if and only if every right map on X is an endomorphism of X.

Proof. If X is a positive implicative $B H$-algebra, then for each $a \in X,(x * y) * a=(x * a) *(y * a)$, i.e., $R_{a}(x * y)=R_{a}(x) * R_{a}(y)$. Hence R_{a} is an endomorphism. The converse follows immediately. The proof is complete.

Proposition 3.9. Let $f: X \rightarrow Y$ be a homomorphism of BH algebras. Then f is injective if and only if $\operatorname{Ker} f=\{0\}$.

Proof. Straightforward.
Theorem 3.10. If L_{x} is a homomorphism, $x \in X$, then $x=0$.

Proof. For any $x \in X$, we have

$$
x=x * 0=L_{x}(0)=L_{x}(0 * 0)=L_{x}(0) * L_{x}(0)=0 .
$$

The converse of Theorem 3.10 need not be true in BH -algebras in general. In Example 2.2, $L_{0}(1 * 3)=0 *(1 * 3)=0 * 0=0$ and $L_{0}(1) * L_{0}(3)=(0 * 1) *(0 * 3)=3 * 2=1$. Hence $L_{0}(1 * 3) \neq$ $L_{0}(1) * L_{0}(3)$. Thus L_{0} is not a homomorphism.

For a positive implicative $B H$-algebra X, we define an operation \circledast in $\mathbb{L}(X)$ as follows. For any $L_{a}, L_{b} \in \mathbb{L}(X)$ and any $x \in X$,

$$
\left(L_{a} \circledast L_{b}\right)(x):=L_{a}(x) * L_{b}(x) .
$$

Using positive implicativity of X, we know

$$
\left(L_{a} \circledast L_{b}\right)(x)=(a * x) *(b * x)=(a * b) * x=L_{a * b}(x)
$$

so $L_{a} \circledast L_{b} \in \mathbb{L}(X)$.
The next theorem gives a characterization of a positive implicative $B H$-algebra by its left maps.

Theorem 3.11. If X is a positive implicative $B H$-algebra, then $\mathbb{L}(X)$ is a positive implicative $B H$-algebra and X is isomorphic to $\mathbb{L}(X)$.

Proof. For any $x \in X$, by positive implicativity of X we have

$$
\begin{aligned}
\left(\left(L_{a} \circledast L_{b}\right) \circledast L_{c}\right)(x) & =((a * x) *(b * x)) *(c * x) \\
& =((a * x) *(c * x)) *((b * x) *(c * x)) \\
& =\left(\left(L_{a} \circledast L_{c}\right)(x)\right) *\left(\left(L_{b} \circledast L_{c}\right)(x)\right) \\
& =\left(\left(L_{a} \circledast L_{c}\right) \circledast\left(L_{b} \circledast L_{c}\right)\right)(x)
\end{aligned}
$$

which means

$$
\left(L_{a} \circledast L_{b}\right) \circledast L_{c}=\left(L_{a} \circledast L_{c}\right) \circledast\left(L_{b} \circledast L_{c}\right) .
$$

It is easy to check that $\left(\mathbb{L}(X) ; \circledast, L_{0}\right)$ is a $B H$-algebra. Therfore it is a positive implicative $B H$-algebra. Next, we show that a map $f: X \rightarrow \mathbb{L}(X)$ defined by $f(x):=L_{x}$ is an isomorphism. Suppose that $f(x)=f(y)$, i.e., $L_{x}=L_{y}$ and so for any $t \in X, L_{x}(t)=L_{y}(t)$ and hence $x * t=y * t$. If we put $t=y$, then $x * y=y * y=0$. Similarly, $y * x=0$. Since X is a $B H$-algebra, $x=y$. This means that f is injective. Clearly f is also surjective. Since for any $t \in X$, $f(x * y)(t)=L_{x * y}(t)=(x * y) * t=(x * t) *(y * t)=L_{x}(t) * L_{y}(t)=$ $\left(L_{x} \circledast L_{y}\right)(t)=(f(x) \circledast f(y))(t)$. It follows that f is a homomorphism. This proves the theorem.

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
[2] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 26-29.
[3] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.
[4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[5] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematicae 1 (1998), 347-354.
[6] J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum 50 (1995), 89-96.
[7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
[8] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31 (1986), 889-894.

Department of Mathematics Education
Dongguk University
Seoel 100-751, Korea
E-mail: sunshine@dgu.ac.kr

Department of Mathematics
Hanyang University
Seoel 133-791, Korea
E-mail: heekim@email.hanyang.ac.kr

