JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 13, No.2, December 2000

HOPF STRUCTURE FOR POISSON
ENVELOPING ALGEBRAS

KANGJU MIN AND SEI-QWON OH

ABSTRACT. For a Poisson Hopf algebra A, we find a natural Hopf
structure in the Poisson enveloping algebra U(A) of A. As an appli-
cation, we show that the Poisson enveloping algebra U(S(L)), where
S(L) is the symmetric algebra of a Lie algebra L, has a Hopf struc-
ture such that a sub-Hopf algebra of U(S(L)) is Hopf-isomorphic to
the universal enveloping algebra of L

Assume throughout that k£ denotes a field of characteristic zero.
Recall that A = (A,-,{,}) is said to be a Poisson algebra if (4, ) is a
commutative k-algebra and (A, {, }) is a Lie algebra such that

{ab,c} = a{b,c} + b{a,c}

for all a,b,c € A.

The Poisson enveloping algebra U(A) of A was constructed in [6].
The main purpose of this paper is to see that U(A) has a natural
Hopf structure if A is a Poisson Hopf algebra. Let L be a Lie algebra
over k and let S(L) be the symmetric algebra of L. Then S(L) has a
natural Poisson structure induced by the Lie algebra L (see [1, 2.8.7]
or [2, Example 1]) and the subspace of homogeneous elements of S(L)
with degree 1 is equal to L. The second aim of this paper is to see
that U(S(L)) contains a sub-Hopf algebra isomorphic to the universal
enveloping algebra U(L) of L.
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Throughout the paper, every vector space will be over k and every
algebra will be an associative k-algebra with unity. For an algebra B,
By, will be the Lie algebra B with Lie bracket [a,b] = ab — ba for all
a,be B.

Let us review the definition for Poisson enveloping algebra (see [6,
3]): For a Poisson algebra A, a triple (U(A),«a,B4), where U(A)
is an algebra, vy : A — U(A) is an algebra homomorphism and

Ba:A— U(A)L is a Lie homomorphism such that

a({a,b}) = Ba)a(b) — a(b)B(a) and G(ab) = a(a)B(b) + a(b)5(a)

for all a,b € A, is called the Poisson enveloping algebra for A if
(U(A),aa,4) satisfies the following; if B is an algebra, v is an al-
gebra homomorphism from A into B and ¢ is a Lie homomorphism
from (A, {, }) into By, such that

7({a,b}) = 6(a)y(b) = 7(b)d(a) and §(ab) = v(a)d(b) + ~(b)é(a)

for all a,b € A, then there exists a unique algebra homomorphism h
from U(A) into B such that hay =~ and h34 = 4.

Note that every Poisson algebra A has a unique Poisson enveloping
algebra U(A) which is generated by a4(A) and 54(A) as an algebra
and that a k-vector space M is a simple left U(A)-module if and only
if M is a left Poisson A-module (see [6, 1, 5 and 6]). Moreover Im(53),
the image of (3, is a Lie algebra with Lie bracket

[6(a), B(b)] = B({a,b})

for all a,b € A.
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DEFINITION 2. (see [3, 3.1.3]) A Poisson algebra A is said to be a
Poisson Hopf algebra if A is also a Hopf algebra (A, ¢, u, €, A, S) over

k such that both structures are compatible in the sense that

A({a,b}) = {A(a), A(b)} aga

for all a,b € A, where the Poisson bracket {, } ag4 on A® A is defined
by
{a@ad,bb}={a,b}@adV +ab® {d b}

for all a,a’,b, b’ € A.
For example, every coordinate ring of Poisson Lie group is a Poisson

Hopf algebra.

LEMMA 3. Let A be a Poisson algebra and let (U(A), «, 3) be the

Poisson enveloping algebra for A. Then

(i) a®a: A®A — U(A)®U(A) is an algebra homomorphism.
(i) a@f+Ra: A®A — (UA) ® U(A))L is a Lie homo-

morphism.

Proof. Straightforward. O

Let A and B be Poisson algebras. An algebra homomorphism
¢ : A — B is said to be a Poisson homomorphism if ¢ is also a Lie

homomorphism.

LEMMA 4. Given Poisson algebras A, B and an algebra C, let
¢ : A — B be a Poisson homomorphism, let a : B — C be an
algebra homomorphism and let 3 : B — (', be a Lie homomorphism
such that

a({b1,b2}) = B(b1)ar(b2) — au(b2)B(b1),

B(b1b2) = a(b1)B(b2) + a(b2)3(b1)
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for all by,bs € B. Then a¢ is an algebra homomorphism from A

into C' and (B¢ is a Lie homomorphism from A into Cp, such that

(ap)({a1,az}) = (B6)(a1)(ag)(az) — (ag)(az)(Bé)(a1)
(Bo)(ara2) = (ad)(a1)(B¢)(az) + (ag)(az)(Bo)(ar)

for all ay,as € A.
Proof. Straightforward. OJ

LEMMA 5. Let A be a Poisson algebra and let (U(A), «, 3) be the
Poisson enveloping algebra for A. Then (U(A)QU(A),a®a,a® (+
B ® «) is the Poisson enveloping algebra for A ® A.

Proof. 1t is straightforward to see that

(a@a)({a®d bab})=(a@8+B@a)(a®d)(a®a)(beb)
—(a@a)(beV) (a2 B+ a)(a®d)

(08 8+020)(a2a)(b3V)) = (a®a)(@8d)(a®+80a) beb)
+ (a®a)(bab’)(a®f+Loa)(awa’).
Let 71 and i5 be the Poisson homomorphisms from A into A ® A

defined by
i1: A— AR A, i1(a) =a®1

is: A— AR A, i2(a) =1®a
for all a € A. Given an algebra B, let up be the multiplication map

on B. If v is an algebra homomorphism from A ® A into B and 0 is
a Lie homomorphism from A ® A into By, such that

T{a®ad,b@b'}) =d(a®a)y(b@b) —v(b@b)i(a®d’)
i(a®ad)(b@V)) =v(a®d)(b@V)+y(bxb)i(a®d)
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for all a,d’,b,b’ € A, then there exist algebra homomorphisms f,g
from U(A) into B such that fa = viy, f8 = i1, ga = iz, g8 = dig
by Lemma 4.

U —L— B U4 —2— B
Touﬁ T%é Taﬂ T%é
A 44 A —2 ., A4

Hence, we have

pe(f ®g)(a®a)(a®a) =vyii(a)yiz(a') = y(a®d)
pe(f®@g)(a® B+ @ a)(a®ad)=rii(a)diz(a’) + di1(a)yiz(a)
=d(a®ad).

Thus pp(f ® g) is an algebra homomorphism such that

pp(f@g)la®a)=v and pup(f@g)(a@B+BR@a)=279

and such an algebra homomorphism pp(f ® ¢) is unique since U(A)
is generated by a(A) and [(A). O

LEMMA 6. Let A and B be Poisson algebras and let (U(A), aa, 54)
and (U(B),ap,fp) be Poisson enveloping algebras for A and B re-
spectively. If ¢ : A — B is a Poisson homomorphism then there

exists a unique algebra homomorphism U(¢) : U(A) — U(B) such
that U(¢)as = app and U(9)Ba = Bpo.

uA) 22 (B

TOéA:ﬁA TOCB,ﬁB

¢

A —— B

Proof. It follows immediately from the definition of Poisson en-

veloping algebra and Lemma 4. 0
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Let A = (A,-,{,}) be a Poisson algebra. Define a k-bilinear map
{,}1 on A by
{a,b}1 = {b,a}
for all a,b € A. Then A; = (A,-,{, }1) is a Poisson algebra. For an
algebra B, we denote by B°P? = (B, o) the opposite algebra of B.

PROPOSITION 7. Let A be a Poisson algebra and let (U(A), «, )
be the Poisson enveloping algebra for A. Then (U(A)°P, «, 3) is the

Poisson enveloping algebra for A;.

Proof. Clearly, «is an algebra homomorphism from A; into U (A)°P
and f is a Lie homomorphism from A; into U(A)7". Moreover, by [7,

16], we have
a({a,b}1) = a({b,a}) = a(b)6(a) — H(a)a(b)
Bla) o a(b) — a(b) o B(a)
Blab) = B(a)a(b) + S(b)afa) = afa) o B(b) + a(b) o 5(a)
for all a,b € A;. If B is an algebra, v : Ay — B is an algebra

homomorphism and 6 : A; — By, is a Lie homomorphism such that

v({a,b}1) = 6(a)y(b) — y(b)d(a) and 6(ab) = v(a)d(b) + ~(b)d(a)
for all a,b € Ay, then v : A — B°P is an algebra homomorphism and
§ : A — Bj” is a Lie homomorphism such that
v({a,b}) = y({b,a}1) = ~(b)d(a) — 6(a)y(b)
=d(a) o y(b) —~(b) o 6(a)
6(ab) = 6(a)y(b) + 6(b)v(a) = v(a) 0 6(b) +¥(b) o 6(a)

for all a,b € A by [7, 16]. Hence there is a unique algebra homo-
morphism A from U(A) into B°P such that haw = v and h3 = ¢ and
so h : U(A)°® — B is a unique algebra homomorphism such that
ha =« and h = 6. Thus (U(A)°P,a, 3) is the Poisson enveloping
algebra for A;. OJ
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THEOREM &. If (A, 1, u,e,A,S) is a Poisson Hopf algebra then
(U(A),t, 1, U(e),U(A),U(S)) is a Hopf algebra such that

UA)a = (a®a)A UA)B=(a@B+F®a)A
U(e)a = ¢ U()pB=0
U(S)a =aS U(S)p = B5S.

Proof. Since A is a Poisson homomorphism and U(A) ® U(A) is
the Poisson enveloping algebra of A ® A by Lemma 5, there exists an
algebra homomorphism U(A) from U(A) into U(A) ® U(A) such that

U(A)a = (a®a)A, UA)S=(a®b+a)A

by Lemma 6. Similarly, there exists an algebra homomorphism U (e)
from U(A) into k such that U(e)a = €, U(e)B = 0 since (k,idy,0)
is the Poisson enveloping algebra of the scalar field k& with trivial
Poisson bracket. Since A is a commutative algebra, the antipode S is
a Poisson homomorphism from A into A; and so there is an algebra
homomorphism U(S) : U(A) — U(A)°P such that U(S)a = aS and
U(S)B = S by Lemma 5 and Lemma 6. It is verified routinely that
(U(A), 1,1, U(e),U(A),U(S5)) is a Hopf algebra. O

Hereafter, we denote by L a Lie algebra with Lie bracket [—, —],
by U(L) the universal enveloping algebra of the Lie algebra L and by
S(L) the symmetric algebra of L. Note that

Sy =kPLPre- -

as a vector space. Then, by [1, 2.8.7] or [2, Example 1], S(L) is a

Poisson algebra with Poisson bracket

{a,b} = [a,b]
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for all a,b € L. Let U = (U(S(L)), a, 3) be the Poisson enveloping
algebra of S(L) and let U’ be the subalgebra of U generated by G(L).
Note that U(L) has the Hopf structure

Ala) =a®1+1®a, €(a) =0, S(a)=—a
for all a € L.

PRrOPOSITION 9. (U’,3j) is the universal enveloping algebra of L,

where j is the inclusion map from L into S(L).

Proof. Given an algebra B and a Lie homomorphism f : L — By,
define two k-linear maps f', f” from S(L) into B by

fl(y=1 f'(L)y=0 f/(LY)y =0 for all i = 2,3, - -
(1) =0 f'le=Ff f(LY)=0foralli=23,---.

Clearly, f'(zy) = f'(z)f'(y) and f"({z,y}) = {f"(2), f"(y)} for all
elements x,y € S(L). Moreover, ' and f” satisfy

F'{a,y}) =0=f"(@)f"(y) — (W) ["(x)
fay) = (@) f" () + () f" ()
for all z,y € S(L). Hence there exists a unique algebra homo-
morphism h : U — B such that ha = f’ and h3 = f”. Since
hBj = f"j = fand U’ is generated by 3j(L), the map h|,, is a unique
algebra homomorphism such that (h[,)3j = f, and so (U’, Bj) is the

universal enveloping algebra of L. 0

THEOREM 10. Let U = (U(S(L)), «, 8) be the Poisson enveloping
algebra of S(L) and let U’ be the subalgebra of U generated by ((L).
Then U has a Hopf structure such that

Aafa) = ala) @1 +1© afa) Af(a) = fla) @1+ 1 f(a)
ea(a) =0 ef(a) =0
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for all a € L. Hence U’ is Hopf-isomorphic to U(L).

Proof. Note that S(L) has the Hopf structure
Ala) =a®1+1®a, €(a) =0, S(a) =—a

for all a € L. We shall show that (S(L),¢, u,e =0,A,S) is a Poisson
Hopf algebra. For this, it is enough to prove the following:

(1) A({z,y}) = {A(z), A(y)}
(2) e({z,y}) =0
(3) S{z,y}) ={S),S(x)}

for all z,y € S(L). Clearly (2) is true. We may assume that z
and y are homogeneous elements. We proceed by induction on the
homogeneous degree. If x or y is of homogeneous element with degree
0 then (1) and (3) are clearly true. If z,y € L then

Az, y}) ={z,y} @1+ 1@ {z,y}
={z®l+1z, y1+1y}={A(x),Ay)}
S{z,y}) = —{a,y} = {-y, —2} = {S(y), S(x)}.
Fix a homogeneous element y € L’ and assume that (1) and (3) are
true for every homogeneous element z with degree < ¢. For homoge-

neous elements a € L",b € L® such that r < i,s < 4,1 < r+ s, we

have that
A({ab,y}) = Ala{b, y} + b{a,y})
A(a)A({b,y}) + A(b)A({a,y})
A(a){A(b), A(y)} + A(b){A(a), Ay)}
{A(ab), A(y)}
S({ab,y}) = S(a{d,y} + b{a,y})
S(a@){S(y),S()} + S(b){S(y), S(a)} = {S(y), S(ab)}
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by the induction hypothesis. Thus (1) and (3) are true for arbitrary
homogeneous elements € S(L) and y € L7. Similarly if a € L",b €
L? such that r < j,s < j,7 <7+ s then

A({z,ab}) = A(a{z,b} + b{z,a})
A(a)A({z,b}) + A)A({z,a})
A(a){A(z), Ad)} + AB){A(x), Ala)}
{A(z), A(ab) }

S(a{z,b} + b{z,a})
S(a){S(b),S(x)} + S(b){S(a),S(z)}
{S(ab), S(x)}.

S({x,ab})

Therefore (1) and (3) are true for all homogeneous elements x,y €
S(L). Hence S(L) is a Poisson Hopf algebra and so (U, ¢, p,€

0,A,S) is a Hopf algebra by Theorem 8. Clearly U’ is a sub-Hopf
algebra isomorphic to U(L) by Proposition 9. O
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