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ON THE MODERATE DEVIATION TYPE FOR

RANDOM AMOUNT OF SOME RANDOM MEASURES

Dae Sik Hwang

Abstract. In this paper we study another kind of the large deviation
property, i.e. moderate deviation type for random amount of random

measures on Rd about a Poisson point process and a Poisson center
cluster random measure.

1. Introduction

Suppose thst S is a Polish space and Bs is its Borel σ-algebra. A

function I(·) from S into [0, ∞] is called a rate function if I(·) is lower

semicontinuous and the level sets {x ∈ S : I(x) < c} are compact sets

in S for each real number c < ∞.
Let Pε be a family of probability measures on the Borel subsets of

S. We say that the family Pε satisfies a large deviation property with

a rate function I(·) if

lim sup
ε→0

ε · log Pε(F ) ≤ − inf
x∈F

I(x)

for each closed set F in S and

lim inf
ε→0

ε · log Pε(G) ≥ − inf
x∈G

I(x)

for each open set G in S.

The simplest situation of large deviations is to take for Pn the distri-

bution on the real line corresponding to the mean (X1+X2+· · ·+Xn)/n

of n independent identically distributed random variables.
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In this paper we want to study another kind of a large deviation

property, i.e. moderate deviation type for random amount of some

random measures on Rd about a Poisson point process and a Poisson

center cluster random measure.

2. Preliminaries and general results

In this section, we introduce a theorem given by Ellis(1985), which

plays a crucial role in this note. We also introduce a theorem given by

Hwang(1993).

Let {Wn; n = 1, 2, · · · } be a sequence of random variables which are

defined on probability spaces {(Ωn, Fn, Pn); n = 1, 2, · · · } and which

take values in R. We define function Cn(t) using the cumulant gener-

ating function, i.e.,

Cn(t) =
1

an

· log En[etWn ], n = 1, 2, · · · , t ∈ R,

where {an; n = 1, 2, · · · } is a sequence of positive numbers tending to

infinity and En denotes expectation with respect to Pn. The following

hypotheses are assumed to hold.

(i) Each function Cn(t) is finite for every t ∈ R.

(ii) C(t) = limn→∞ Cn(t) exists for every t ∈ R and is finite. We

define the function I : R → [0,∞] by the Legendre-Fenchel transform

I(x) = sup
t∈R
{tx− C(t)}, x ∈ R.

Theorem 2.1. ([3]) Let Pn be the distribution of Wn/an on R.

Under the above hypotheses (i) and (ii), the following conclusion hold.

(a) I(x) is lower semicontinuous, nonnegative and has compact level

sets with infx∈R I(x) = 0

(b) The upper large deviation bound is valid :

lim sup
n→∞

1

an

· log Pn(F ) ≤ − inf
x∈F

I(x) for each closed set F in R.
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(c) Moreover, if C(t) is in addition differentiable for all t, then the

lower large deviation bound is valid :

lim infn→∞ 1
an
· log Pn(G) ≥ − infx∈G I(x) for each open set G in R.

Hence, if (b) and (c) hold for all closed subsets F and (c) for all open

subsets G, respectively, then {Pn; n = 1, 2, · · · } satisfies a large devia-

tion property with respect to {an; n ≥ 1} and with the rate function

I(x).

We now assume that the readers are familiar with the language of

random measures. As a good reference for details, the reader may

consult Kallenberg’s book(1983).

Let N be the set of Radon(i.e., locally finite) Borel measures on Rd,

so that if µ ∈ N then it is finite on bounded Borel sets. Let Ñ be the

σ-algebra of subsets of N generated by sets of the form

{µ ∈ N : µ(B) < r}

for a bounded Borel set B and a nonnegative real number r. A random

measure is a measurable function X from a fixed probability space

(Ω, A, P ) into (N, Ñ).

If B ⊆ Rd is a Borel subset, then we let X(B) be the random amount

of mass the measure X gives B. Similarly, we let X(f) be the integral

of f : R → R with respect to the random measure X if this is defined.

We assume X to be stationary(i.e., to have a translation invariant dis-

tribution) and ergodic. The most well known random measures are the

Poisson point process and the Poisson center cluster random measure.

We define random amount Xr(B) by Xr(B) = X(rB) for r ∈ R+ .

Let Xr(B)/rd be the random variables obtained by rescaling random

measures Xr. The ergodic theorem implies that Xr(B)/rd converges to

a mean of Xr(B)/rd as r →∞. Hwang showed that Xr(B)/rd satisfies

a large deviation property in the following theorem.
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Theorem 2.2. Let Pr be the distribution of Xr(B)/rd. Suppose

that Φ(t) := limr→∞ 1
rd · log E[etXr(B)] exists for each t ∈ R and is

finite. We also define the Legendre-Fenchel transform of Φ(t) by I(x) =

supt∈R{tx−Φ(t)} for each x ∈ R. Then, the following conclusions hold.

(a) I(x) is a rate function and infx∈R I(x) = 0.

(b) For each closed set F in R,

lim sup
r→∞

1

rd
· log Pr

(
Xr(B)

rd
∈ F

)
≤ − inf

x∈F
I(x).

(c) If Φ(t) is in addition differentiable for each t ∈ R, then for each

open set G in R,

lim inf
r→∞

1

rd
· log Pr

(
Xr(B)

rd
∈ G

)
≥ − inf

x∈G
I(x).

Hence, if (b) and (c) hold for all closed subsets F and for each open

subsets G , respectively, then {Pr; r ∈ R+} satisfies a large deviation

property with a rate function I.

3. Moderate deviation type for some random measures

In this section we consider a Poisson point process and a Poisson

center cluster random measure. These are general classes of cluster

models which include the Poisson, Neyman-Scott cluster processes and

self-exciting processes. For more details the reader may consult Kallen-

berg [6] and Karr [7].

Let X be a random measure on Rd and let B be a Borel subset of

Rd . We recall random amount Xr(B) by Xr(B) = X(rB) for r ∈ R+.

The ergodic theorem implies that Xr(B)/rd converges to a mean of

Xr(B)/rd as r → ∞. Let Pr be the distribution of Xr(B)/rd, the

random variables obtained by rescaling random measures Xr. Hwang

investigated a large deviation property for the probability measures

Pr with respect to the sequence {rd; r ∈ R+, d ≥ 1} and with a rate

function I depending on the moment generating function.
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Here we consider a sequence {ar; r ∈ R+} of positive numbers which

go to ∞ as r → ∞ and such that ar

rd/2 → 0 as r → ∞. The se-

quence of interest in moderate deviation type is T (r) := { ar

rd/2{Xr(B)−
E[Xr(B)]}; r ∈ R+} for a Borel subset B of Rd. This result falls into

the realm of moderate deviation properties.

Thus, we want to show the moderate deviation type for random

amount of some random measures. This means that T (r) satisfies a

large deviation property with respect to {ar
2; r ∈ R+} and with the

rate function I(·).

3.1. Poisson point process with intensity α > 0. We say that X

is a Poisson point process with intensity α > 0 if X(B) is a Poisson

random variable with parameter α|B| for each bounded Borel set B

in Rd and X(B1), X(B2), · · · , X(Bn) are independent Poisson random

variables with respective parameters α|B1|, α|B2|, · · · , α|Bn| for disjoint

bounded Borel sets B1, B2, · · · , Bn in Rd, where | · | denotes Lebesgue
measure.

For a Poisson point process X with intensity α > 0, we get the

cumulant generating function Cr(t) of the random variables Xr(B),

i.e.,

Cr(t) =
1

ar
2
· log Er[e

tXr(B)] =
1

ar
2
· (eαrd|B|(et−1)), r ∈ R+, t ∈ R.

Theorem 3.1. Let X e a Poisson point process with intensity α > 0

and let B be a bounded Borel subset of Rd. Suppose that ar

rd/2 → 0 as

r → ∞ for a sequence {ar; r ∈ R+} of positive numbers which go to

infinity as r →∞. Then we have the following properties:

(a) limr→∞ Cr(t) = 1
2
α|B|t2, t ∈ R and I(x) = x2

2α|B| , x ∈ R.

(b) Xr(B)−E[Xr(B)]

arrd/2 satisfies the (ar
2) - large deviation property with

a rate function I(x).
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Proof. First, let us consider a function Cr(t) of the random variables

as follows:

Cr(t) =
1

ar
2

log E[e
ar

rd/2
t{Xr(B)−E[Xr(B)]}

]

= −E[Xr(B)]

arrd/2
t +

1

ar
2

log E[e
ar

rd/2
tXr(B)

]

= −αrd|B|
arrd/2

t +
1

ar
2

log

{
eαrd|B|(e

ar

rd/2
t−1)

}

= −αrd|B|
arrd/2

t +
αrd|B|

ar
2

{
e

ar

rd/2
t − 1

}

= −αrd|B|
arrd/2

t +
αrd|B|

ar
2

∞∑

k=1

(
ar

rd/2

)k
tk

k!

=
αrd|B|

ar
2

∞∑

k=2

(
ar

rd/2

)k
tk

k!

=
α|B|

2
t2 + α|B|

∞∑

k=3

(
ar

rd/2

)k−2
tk

k!
.

Since ar

rd/2 → 0 as r →∞, the second term in the last line converges

to α|B|
2

t2 as r → ∞ . Differentiating tx − C(t) with respect to t, I(x)

can be obtained by I(x) = x2

2α|B| , x ∈ R. For the proof of (b), Theorem

2.1 implies (b) with ar = ar
2 and Wr = T (r) .

3.2. Poisson center cluster random measure. From now on, we

follow Burton and Dehling(1990) for terminology. Let U be a stationary

Poisson process on Rd with intensity α > 0. V is a point process so

that E[V (Rd)] = ζ < ∞. We also assume that V (Rd) has a finite

moment generating function MV (Rd)(t) = E[etV (Rd)] for t ∈ R. Let xi

be the random occurrences of U and let Vi be independent identically

distributed(i.i.d.) copies of V that are also independent of U . The
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resulting cluster process X is said to be a Poisson center cluster process,

which is defined by superimposing i.i.d. copies of V centered at the

occurrences of U .

If B is a bounded Borel subset of Rd, then X is defined by

X(B) =
∑

i

Vi(B − xi).

Note that E[X(B)] = αζ|B|.
The following theorem is known as Campbell’s formula.

Theorem 3.2. The moment generating function of X(B) is

MX(B)(t) = exp

{
α ·

∫

Rd

E[etV (B−x) − 1]dx

}
, t ∈ R.

Theorem 3.3. Let X be a Poisson center cluster random measure

on Rd and let B be a bounded Borel subset of Rd. We assume that

V (Rd) has a finite moment generating function MV (Rd)(t) = E[etV (Rd)]

for t ∈ R. Then we have the following properties:

(a) limr→inf Cr(t) = 1
2
α|B|t2, t ∈ R and I(x) = x2

2α|B|E[(V (Rd)2]
, x ∈ R.

(b) Xr(B)−E[Xr(B)]

arrd/2 satisfies the (ar
2)- large deviation property with a

rate function I(x).

Proof. First, let us consider some function Cr(t) of the random vari-

ables as follows:
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Cr(t) =
1

ar
2

log E[e
ar

rd/2
t{Xr(B)−E[Xr(B)]}]

= −αζrd|B|
arrd/2

t +
1

ar
2

log E[e
ar

rd/2
tXr(B)

]

= −αζrd|B|
arrd/2

t +
α

ar
2

∫

Rd

E[e
ar

rd/2
tV (rB−x) − 1]dx by Theorem 3.2

= −αζrd|B|
arrd/2

t +
α

ar
2

∞∑

k=1

(
ar

rd/2

)k
tk

k!

∫

Rd

E[V k(rB − x)]dx

= −αζrd|B|
arrd/2

t +
αrd

ar
2

∞∑

k=1

(
ar

rd/2

)k
tk

k!
·

E

[ ∫

Rd

∫

Rd

· · ·
∫

Rd

1rB−ry(u1) · · · 1rB−ry(uk)V (du1) · · ·V (duk)dy

]

= −αζrd|B|
arrd/2

t +
αrd

ar
2

∞∑

k=1

(
ar

rd/2

)k
tk

k!
·

E

[ ∫

Rd

· · ·
∫

Rd

|(B − u1/r) · · · (B − uk/r)|V (du1) · · ·V (duk)

]

= −αζrd/2|B|
ar

t +
αrd/2

ar

tE

[ ∫

Rd

|(B − u1/r)|V (du1)

]

+
α

2
t2E

[ ∫

Rd

∫

Rd

|(B − u1/r)(B − u2/r)|V (du1)V (du2)

]

+α

∞∑

k=3

(
ar

rd/2

)k−2
tk

k!

E

[ ∫

Rd

· · ·
∫

Rd

|(B − u1/r) · · · (B − uk/r)|V (du1) · · ·V (duk)

]
.

Since 1(B−u1/r)···(B−uk/r) ≤ 1(B−u1/r) and |(B − u1/r) · · · (B − uk/r)| ≤
|(B−u1/r)| = |B|, let us apply the Fubini’s theorem and the dominated
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convergence theorem in Cr(t). Then the first term and the second term

make zero together, and the third term converges to 1
2
α|B|E[(V (Rd))2]t2,

and the fourth term converges to zero since ar

rd/2 → 0 as r →∞. Thus

we get that C(t) = 1
2
α|B|E[(V (Rd))2]t2 for each t ∈ R. I(x) and (b)

can be proved in the same way as Theorem3.1.
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