ON THE HYERS-ULAM-RASSIAS STABILITY OF THE JENSEN'S EQUATION IN BANACH MODULES

Deok-Hoon Boo* and Won-Gil Park**

Abstract. We prove the Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a Banach algebra.

1. Introduction

Let E_{1} and E_{2} be Banach spaces, and $f: E_{1} \rightarrow E_{2}$ a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Th.M. Rassias [7] showed that there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$.
The stability problems of functional equations have been investigated in several papers $([2,3,4,5])$.

Throughout this paper, let B be a unital Banach algebra with norm $|\cdot|$, and let ${ }_{B} \mathbb{B}_{1}$ and ${ }_{B} \mathbb{B}_{2}$ be left Banach B-modules with norms $\|\cdot\|$ and $\|\cdot\|$, respectively.

We are going to prove the Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a Banach algebra.

[^0]Theorem 1. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping for which there exists a function $\varphi:{ }_{B} \mathbb{B}_{1} \backslash\{0\} \times{ }_{B} \mathbb{B}_{1} \backslash\{0\} \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{-k} \varphi\left(3^{k} x, 3^{k} y\right)<\infty, \\
\left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq \varphi(x, y)
\end{gathered}
$$

for all $a \in B(|a|=1)$ and all $x, y \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$.

Proof. By [6, Theorem 1], it follows from the inequality of the statement for $a=1$ that there exists a unique additive mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement. The additive mapping T given in the proof of [6 , Theorem 1] is similar to the additive mapping T given in the proof of [7 , Theorem]. By the same reasoning as the proof of [7, Theorem], it follows from the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in B_{B} \mathbb{B}_{1}$ that the additive mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is \mathbb{R}-linear.

By the assumption, for each $a \in B(|a|=1)$,

$$
\|2 a f(3 x)-f(2 a x)-f(4 a x)\| \leq \varphi(2 x, 4 x)
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. So

$$
\begin{aligned}
\| a f\left(3^{n} x\right) & -f\left(3^{n} a x\right)\|=\| a f\left(3^{n} x\right)-\frac{1}{2} f\left(2 \cdot 3^{n-1} a x\right) \\
& -\frac{1}{2} f\left(4 \cdot 3^{n-1} a x\right)+\frac{1}{2} f\left(2 \cdot 3^{n-1} a x\right) \\
& +\frac{1}{2} f\left(4 \cdot 3^{n-1} a x\right)-f\left(3^{n} a x\right) \| \\
\leq & \frac{1}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right) \\
& +\frac{1}{2}\left\|2 f\left(3^{n} a x\right)-f\left(2 \cdot 3^{n-1} a x\right)-f\left(4 \cdot 3^{n-1} a x\right)\right\| \\
\leq & \frac{1}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right)+\frac{1}{2} \varphi\left(2 \cdot 3^{n-1} a x, 4 \cdot 3^{n-1} a x\right)
\end{aligned}
$$

for all $a \in B(|a|=1)$ and all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. Thus $3^{-n} \| a f\left(3^{n} x\right)-$ $f\left(3^{n} a x\right) \| \rightarrow 0$ as $n \rightarrow \infty$ for all $a \in B(|a|=1)$ and all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. Hence

$$
T(a x)=\lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} a x\right)=\lim _{n \rightarrow \infty} 3^{-n} a f\left(3^{n} x\right)=a T(x)
$$

for all $a \in B(|a|=1)$ and all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. Since T is \mathbb{R}-linear and $T(a x)=a T(x)$ for each element $a \in B(|a|=1)$,

$$
\begin{aligned}
T(a x+b y) & =T(a x)+T(b y) \\
& =|a| \cdot T\left(\frac{a}{|a|} x\right)+|b| \cdot T\left(\frac{b}{|b|} y\right) \\
& =a T(x)+b T(y)
\end{aligned}
$$

for all $a, b \in B \backslash\{0\}$ and all $x, y \in{ }_{B} \mathbb{B}_{1}$. So the unique \mathbb{R}-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is a B-linear mapping, as desired.

Corollary 1. Let $p<1$ and $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ a mapping such that

$$
\left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $a \in B(|a|=1)$ and all $x, y \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3+3^{p}}{3-3^{p}}\|x\|^{p}
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$.
Proof. Define $\varphi:{ }_{B} \mathbb{B}_{1} \backslash\{0\} \times{ }_{B} \mathbb{B}_{1} \backslash\{0\} \rightarrow[0, \infty)$ by $\varphi(x, y)=$ $\|x\|^{p}+\|y\|^{p}$ and apply Theorem 1.

Theorem 2. Let B be a unital Banach $*$-algebra over \mathbb{C}, and B^{+} the set of positive elements of B. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping for which there exists a function $\varphi:{ }_{B} \mathbb{B}_{1} \backslash\{0\} \times{ }_{B} \mathbb{B}_{1} \backslash\{0\} \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{-k} \varphi\left(3^{k} x, 3^{k} y\right)<\infty \\
\left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq \varphi(x, y)
\end{gathered}
$$

for all $a \in B^{+}(|a|=1), a=i$ and all $x, y \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement of Theorem 1.

Proof. By the same reasoning as the proof of Theorem 1, there exists a unique \mathbb{R}-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that the desired condition. By the same method as the proof of Theorem 1, one can show that

$$
T(a x)=\lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} a x\right)=\lim _{n \rightarrow \infty} 3^{-n} a f\left(3^{n} x\right)=a T(x)
$$

for all $a \in B^{+}(|a|=1), a=i$ and all $x \in B_{B} \mathbb{B}_{1} \backslash\{0\}$. So

$$
\begin{aligned}
T(a x+b y) & =a T(x)+b T(y) \\
T(i x) & =i T(x)
\end{aligned}
$$

for all $a, b \in B^{+} \backslash\{0\}$ and all $x, y \in{ }_{B} \mathbb{B}_{1}$. For any element $a \in B$, $a=a_{1}+i a_{2}$, where $a_{1}=\frac{a+a^{*}}{2}$ and $a_{2}=\frac{a-a^{*}}{2 i}$ are self-adjoint elements, furthermore, $a=a_{1}^{+}-a_{1}^{-}+i a_{2}^{+}-i a_{2}^{-}$, where $a_{1}^{+}, a_{1}{ }^{-}, a_{2}^{+}$, and $a_{2}{ }^{-}$are positive elements (see [1, Lemma 38.8]). So

$$
\begin{aligned}
T(a x) & =T\left(a_{1}^{+} x-a_{1}^{-} x+i a_{2}^{+} x-i a_{2}^{-} x\right) \\
& =a_{1}{ }^{+} T(x)-a_{1}^{-} T(x)+a_{2}^{+} T(i x)-a_{2}^{-} T(i x) \\
& =a_{1}^{+} T(x)-a_{1}^{-} T(x)+i a_{2}^{+} T(x)-i a_{2}^{-} T(x) \\
& \left.={\left(a_{1}\right.}^{+}-{a_{1}}^{-}+i{a_{2}}^{+}-i{a_{2}}^{-}\right) T(x) \\
& =a T(x)
\end{aligned}
$$

for all $a \in B$ and all $x \in{ }_{B} \mathbb{B}_{1}$. Hence

$$
T(a x+b y)=T(a x)+T(b y)=a T(x)+b T(y)
$$

for all $a, b \in B$ and all $x, y \in{ }_{B} \mathbb{B}_{1}$.
Therefore, there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement of Theorem 1.

Corollary 2. Let E_{1} and E_{2} be complex Banach spaces. Let $f: E_{1} \rightarrow E_{2}$ be a mapping for which there exists a function φ : $E_{1} \backslash\{0\} \times E_{1} \backslash\{0\} \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{-k} \varphi\left(3^{k} x, 3^{k} y\right)<\infty \\
\left\|2 \lambda f\left(\frac{x+y}{2}\right)-f(\lambda x)-f(\lambda y)\right\| \leq \varphi(x, y)
\end{gathered}
$$

for $\lambda=1, i$ and all $x, y \in E_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$, then there exists a unique \mathbb{C}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))
$$

for all $x \in E_{1} \backslash\{0\}$.
Proof. Since \mathbb{C} is a Banach algebra, the Banach spaces E_{1} and E_{2} are considered as Banach modules over \mathbb{C}. By Theorem 2, there exists a unique \mathbb{C}-linear mapping $T: E_{1} \rightarrow E_{2}$ satisfying the condition given in the statement.

Remark 1. In Corollary 1 , when $a \in B(|a|=1)$ are replaced by $a \in B^{+}(|a|=1), a=i$, the results do also hold.

THEOREM 3. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow B_{B} \mathbb{B}_{2}$ be a mapping for which there exists a function $\varphi:{ }_{B} \mathbb{B}_{1} \backslash\{0\} \times{ }_{B} \mathbb{B}_{1} \backslash\{0\} \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
& \widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{k} \varphi\left(3^{-k} x, 3^{-k} y\right)<\infty \\
& \left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq \varphi(x, y)
\end{aligned}
$$

for all $a \in B(|a|=1)$ and all $x, y \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \widetilde{\varphi}\left(\frac{x}{3}, \frac{-x}{3}\right)+\widetilde{\varphi}\left(\frac{-x}{3}, x\right)
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$.
Proof. By [6, Theorem 6], it follows from the inequality of the statement for $a=1$ that there exists a unique additive mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement. The additive mapping T given in the proof of [6, Theorem 6] is similar to the additive mapping T given in the proof of [7, Theorem]. By the same reasoning as the proof of [7, Theorem], it follows from the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$ that the additive mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is \mathbb{R}-linear.

By the assumption, for each $a \in B(|a|=1)$,

$$
\left\|2 a f\left(3^{-1} x\right)-f\left(2 \cdot 3^{-2} a x\right)-f\left(4 \cdot 3^{-2} a x\right)\right\| \leq \varphi\left(2 \cdot 3^{-2} x, 4 \cdot 3^{-2} x\right)
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. So

$$
\begin{aligned}
& \left\|a f\left(3^{-n} a x\right)-f\left(3^{-n} a x\right)\right\|=\| a f\left(3^{-n} x\right)-\frac{1}{2} f\left(2 \cdot 3^{-n-1} a x\right) \\
& \quad-\frac{1}{2} f\left(4 \cdot 3^{-n-1} a x\right)+\frac{1}{2} f\left(2 \cdot 3^{-n-1} a x\right) \\
& \quad+\frac{1}{2} f\left(4 \cdot 3^{-n-1} a x\right)-f\left(3^{-n} a x\right) \| \\
& \leq
\end{aligned}
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$ and all $a \in B(|a|=1)$. Thus $3^{n} \| a f\left(3^{-n} x\right)-$ $f\left(3^{-n} a x\right) \| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$ and all $a \in B(|a|=1)$. Hence

$$
T(a x)=\lim _{n \rightarrow \infty} 3^{n} f\left(3^{-n} a x\right)=\lim _{n \rightarrow \infty} 3^{n} f\left(3^{-n} a x\right)=a T(x)
$$

for all $x \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$ and all $a \in B(|a|=1)$. By the same reasoning as the proof of Theorem 1, the unique \mathbb{R}-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is a B-linear mapping, as desired.

Corollary 3. Let $p>1$ and $f: B \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ a mapping such that

$$
\left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $a \in B(|a|=1)$ and all $x, y \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3^{p}+3}{3^{p}-3}\|x\|^{p}
$$

for all $x \in{ }_{B} \mathbb{B}_{1}$.
Proof. The proof is similar to the proof of Corollary 1.
Theorem 4. Let B be a unital Banach *-algebra over \mathbb{C}. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping for which there exists a mapping $\varphi:{ }_{B} \mathbb{B}_{1} \backslash\{0\} \times{ }_{B} \mathbb{B}_{1} \backslash\{0\} \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
& \widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{k} \varphi\left(3^{-k} x, 3^{-k} y\right)<\infty \\
& \left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq \varphi(x, y)
\end{aligned}
$$

for all $a \in B^{+}(|a|=1), a=i$ and all $x, y \in{ }_{B} \mathbb{B}_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement of Theorem 3.

Proof. The proof is similar to the proof of Theorem 2.
Corollary 4. Let E_{1} and E_{2} be complex Banach spaces. Let $f: E_{1} \rightarrow E_{2}$ be a mapping for which there exists a function φ : $E_{1} \backslash\{0\} \times E_{1} \backslash\{0\} \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{k} \varphi\left(3^{-k} x, 3^{-k} y\right)<\infty \\
\left\|2 \lambda f\left(\frac{x+y}{2}\right)-f(\lambda x)-f(\lambda y)\right\| \leq \varphi(x, y)
\end{gathered}
$$

for $\lambda=1, i$ and all $x, y \in E_{1} \backslash\{0\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$, then there exists a unique \mathbb{C}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \widetilde{\varphi}\left(\frac{x}{3}, \frac{-x}{3}\right)+\widetilde{\varphi}\left(\frac{-x}{3}, x\right)
$$

for all $x \in E_{1} \backslash\{0\}$.
Proof. The proof is similar to the proof of Corollary 2.

Remark 2. In Corollary 3, when $a \in B(|a|=1)$ are replaced by $a \in B^{+}(|a|=1), a=i$, the results do also hold.

Remark 3. When the second inequalities given in the statements of Theorem 1 and Theorem 3 are replaced by

$$
\left\|2 a^{m} f\left(\frac{x+y}{2}\right)-f\left(a^{d} x\right)-f\left(a^{d} y\right)\right\| \leq \varphi(x, y)
$$

for nonnegative integers m and d, by similar methods to the proofs of Theorem 1 and Theorem 3, one can show that there exist unique \mathbb{R}-linear mappings $T:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$, satisfying the conditions given in the statements of Theorem 1. and Theorem 3, such that

$$
a^{m} T(x)=T\left(a^{d} x\right)
$$

for all $a \in B(|a|=1)$ and all $x \in{ }_{B} \mathbb{B}_{1}$.

References

1. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg 62 (1992), 59-64.
3. G.L. Forti, The stability of homomorphisms and amenability, with applications to functional equations, Abh. Math. Sem. Hamburg 57 (1987), 215-226.
4. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, 1998.
5. S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
6. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
7. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
8. H. Schröder, K-Theory for Real C^{*}-Algebras and Applications, Pitman Research Notes in Math. Ser., vol. 290, Longman Sci. Tech., Essex, 1993.

*

Department of Mathematics
Chungnam National University
TaEJon 305-764, South Korea
E-mail: dhboo@math.chungnam.ac.kr

Department of Mathematics
Chungnam National University
TaeJon 305-764, South Korea
E-mail: wgpark@math.chungnam.ac.kr

[^0]: *Supported by grant No. 2000-015-DP0025 from the KRF.
 Received by the editors on May 7, 2001.
 2000 Mathematics Subject Classifications: Primary 39B22, 39B32 Secondary 46 Bxx .

 Key words and phrases: Jensen's equation, stability, Banach module over Banach algebra.

