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STABILITY OF A JENSEN TYPE 

FUNCTIONAL EQUATION

Sang Han Lee

ABSTRACT. In this paper, we solve a Jensen type functional equation 
and prove the stability of the Jensen type functional equation.

1. Introduction

In 1940, S. M. Ulam ([9]) posed the following question concerning 

the stability of homomorphisms: Given a metric group (G,+,d), a 

number e > 0 and a mapping f : G —今 G which satisfies the inequality

d(f(x + y),f(x) + f(y)) < 仁

for all y E (7, does there exist an automorphism a : G — G and a 

constant fe > 0, depending only on G, such that for all ⑦ € G

d(f(x), a(x)) < fee ?

This question became a source of the stability theory in the Hyers- 

Ulam sense.

The case of approximately additive mappings was solved by D. H. 

Hyers ([1]) under the assumption that X and Y are Banach spaces. In 

1978, Th. M. Rassias ([7]) generalized the result of Hyers as follows: 

Let / : _X —> y be a mapping between Banach spaces and let 0 < p < 1 

be fixed. If f satisfies the inequality

||/(x 十 y) — f(z) — ")1 匕 유(llzlf + ||<)
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for some > 0 and all x,y E X, then there exists a unique additive 

mapping A : X Y such that

PH —『키l<

for all x E X. If, in addition, f(tx) is continuous in t for each fixed 

x G then A is linear.

In 2000, T. Trif ([8]) solved the Popoviciu functional equation

3f （으士=） 十 f （찌 + f（y）+ f（z） 

=2H 흥으）+'（쓰）+'（홓래

and proved the stability of the Popoviciu functional equation.

In this paper we deal with a Jensen type functional equation

(1) 6/ （으끌士으） + /（으） + f（y） 十 /（X） 

끙으）+' +/ 寺= 3 f

In Section 2 in this paper we solve the Jensen type functional equation

(1).  In Section 3 we prove the stability of the Jensen type functional 

equation (1).

2. Solution of the Jensen type functional equation (1)

It is well known that if X and Y are real linear spaces, then a 

mapping / : X —> F is a solution of the Jensen functional equation 

2/ (으？의) = f(x) + f(y) if and only if there exist an element B E Y 

and an additive mapping A : X -^Y such that f(x) = A(x) + B for all 

x E X. The following theorem shows that the Jensen type functional 

equation (1) is equivalent to the Jensen functional equation.
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THEOREM 1. Let X and Y be real linear spaces. A mapping f : 

X -^Y satisfies (1) for all x、y,zEX\ {0} if and only if there exist 

an element B EY and an additive mapping A'.X-^Y such that

/(⑦) = A(x) + B

for all x E X.

Proof. Necessity, Set B := /(0) and then define a mapping A :

X y by A(⑦) := /(⑦) 一 B. Then A(0) = 0 and

(2) 6A (으士=) + W) + A(.y) + O

=3 H풍으 )+4쁳으)+4흫으)]

for all x^y^z E X \ {0}. We 신aim that A is additive.

Putting z — —y in (2) we have

(3) 6A (g) + A(x) + A(y) + A(—y) =3 A (흥으) 十 쇼 (으그으)

for all :c,y 6 X \ {0}. Replacing 이 by ⑦ in (3) we get

(4) 6A (g) = A(x) — A(-x)

for all ⑦ G X \ {0}. Also, (4) is true for x = 0 since A(0) = 0. 

Replacing x by 3x in (4) we get

(5) A(z) = 시330 — 시—330
6

and hence

(6) 이(一文) = —刀(⑦)
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for all x E X. From (5) and (6) it follows that

3A(re) = A{3x)

for all x E X. Replacing x by 3y in (3) and using (6) and (7) we get

(8) … = A(2y)

for all y E X, Finally, putting 之 = —x — y in (2) and using (6) we get 

(9) A(x) + A(y) — A(x + j/) = 3 

y+
2 A y

-
2

A

for all x,y E. X. From (8) and (9) we have

+ y) = A(x) + A(y)

for all y E X.

Sufficiency. This is obvious □

3. Stability of the Jensen type functional equation (1)

Let R十 denote the set of nonnegative real numbers. Recall that a 

function H : R十 x R十 x —> R十 is homogeneous of degree p > 0 if it 

satisfies H(tu,tv,tw) = tpH(u,v,w) for all nonnegative real numbers 

t,u,v and w. Throughout this section X and Y will be a real normed 

linear space and a real Banach space, respectively. Given a mapping 

/ : X —> y, we set

Df(x, y, z) = 6/ (으븤±으) 十 f(x) + f(y) + f 으)

-3H 흫으 +'(뽛스)+广r)

for all x,y,z G X. Note that Df(x, y,z) = 0 for all x,y, z E X \ {0} 

and /(0) = 0 if and only if f is additive.
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THEOREM 2. Assume that <^ > 0 and 0 < p < 1. Let a function H 

be homogeneous of degree p. If the mapping f : X Y satisfies

(10) ||W(z,y,2)l 匕八씨 IJMIJIO

for all x,y,zEX\ {0}, then there exists a unique additive mapping 

A \X—^Y such that
5
 -4 2(3구•-ZIjH(IMI,IMI,IMI)

for all x E X.

Proof. Let g : X 3 K be a mapping defined by g(x) := /(⑦)一/(0).

Then g『(0) = 0 and we have

(12) ||0(,,“)|匕5 + 互(||씨|,||<||끼|) 

for all x,y,zEX\ {0}. Putting y = x and z = —x in (12) we get

凶 ($) — ") — 少一z)]|| < 6 + 印II씨I, II찌I, II찌I)

for all x G X \ {0}. Also, (13) is true for ⑦ = 0 since 以(0) = 0. 

Replacing x by in (13) and dividing by 6 we get

g(3x) -g(-3x)

_ ——n——

(13)

(14)

for all

(15)

丕|(5 + 3"互(||씨|,||씨|,||찌|))

€ X. Using (14) we have

g(3nx) — g(—3nx) g(3n+1:r) — :g(—3『너’1：r)

2-3n

1
<----
— 2 • 3n

1
+ 2^~3n

2 • 3 …

g(W)-쌔"+1찌-引—3애찌
2-3

M-3",)-9(_3n+1찌—引3"+내)
2-3

드|(3-"5 +3" … 3%(|| 끼 IJMIJMD)

x
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for all x E X and all positive integers n. From (15) we have

引 3mz) — ff(—3mz) 으(3、) — 引—3"z)

2 • 3m 그 2 • 3n

1 / X n — m — l n — m — 1

<q\^ E『k + ^-^wiaiziMMiJMi) £ 3(…水
\ k=0 k=0 

for all ⑦ € X and all positive integers m and n with m < n. This 

shows that { g(3 체厂으 으)-1 is a Cauchy sequence for all x G X. 

Consequently, we can define a mapping A : X —> K by

(16)
w)：= lim WM-g(-3",) 

n—^oa 23n

for all x E X. From (14) and (15), we have

(17)
引3"z)—引一3"z)
----- T호---- -  ")

/ n —1 n — 1

으 pE3-주+3%(||씨 mmijmi)E3( …)쥬
\ k=0 k=0

으f +2(3丄一 1)印11 지1’11씨1’11끼1}

for all ⑦ £ X and all positive integers n. Taking limit in (17) as 

n —>(X), we get (11). By (12) and (16) we have

\\DA(x,y,z)\\

= lim 丁느||I乃(3特,3牧,3門) —I乃(—3凡3牧,—3^)||

< lip 느休 +印||3"씨|,||3"<||3"끼I)) 
n-4-oo o

= lim + 
n—¥oo \ J J

= 0
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for all x,y, z E X \ {0}. Since A(0) = 0, it follows that A is additive.

Now, let A' : X —今 y be another additive mapping satisfying (11). 

Then we have

||A(z) — A'HII = 3-"||A(3"x) - A'(W)||

으 3—"(||A(3"z) —/(3"z)+/(0)||

+ ||/(3"x)-/(0)—A'(3"z)||)

으 3-" (: 十 ⑪丄애%01끼1’11이1’11끼0)

으 으 + 휴스三'프01씨1’11에1’11찌1)

for all ⑦ € X and all positive integers n. Since

= (心 + 〒丄〒…w끼 I, II끼 I, II 끼 I)) = 0, 

we can conclude that = Af(x) for all x E X. □

THEOREM 3. Assume that 1 < p. Let a function H be homoge­

neous of degree p. If the mapping f : X Y satisfies /(0) = 0 

and

(18) ||P/(까/,끼匕印 || 끼 I,|M|,|| 히 I)

for all x^y^z E X \ {0}, then there exists a unique additive mapping 

A : X Y such that

3 …
(19) Hf(z) — A(z)|| < 厂一豆三印II끼I, IHI)丄 _ J p

for all x E X.

Proof. Putting y = x and z = —x in (18) we get

(20) 3/ (；) - /(찌 -/("찌 < |互(||이|, ||끼|, ||씨|)
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for all ⑦ G X \ {0}. Also, (20) is true for :z: = 0 since /(0) = 0. Using 

(20) we have

(21)

/…⑦)  /(3-—) _ f(3—(n+1)⑦) 一 f(—3—("十心⑦)

<^-3n 3/

+ | •삐|3f

사.3(1-『)7%(||씨|川끼|?||씨|)

2 - 3-(어느) 
/(3-☆)/(—3-—)

2

-3~nx\ f(-3~nx)  f(3~nx)

~3

2.3~n

2

for all ⑦ € X and all nonnegative integers n. From (21) we have

(22)
/(3--z) — /(—3--z) /(3-☆) — /(—3-"z)

2 - 3“m 2 • 3-"

1 n — m — l

드 3(1-")"%(||씨|,||씨|,||끼|) £ 3—싸
2 么

for all ⑦ 6 X and all nonnegative integers m and n with m < n. This 

shows that | ———Qg쓰‘3——— j is a Cauchy sequence for all x E X. 

Consequently, we can define a mapping A : X —> K by

(23)
A(,):= 쇼 /…〜/(-으) 

n—>oo 2-3“n

for all x E X. By (18) and (23) we have 

— n

\\DA(x,y,z)\\

= lim 으“1 .3"||刀/(3—"z,3-"y,3-nz) — Df(—3-"z,—3-牧3-"z)|| 
n—>oo

< lim 3W(||3—"찌|,||3-牧||,||3—"히|) 
n—>oo

= lim 3—"%(||끼IJh/IIJI끼I) 
n—>oo

= 0
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for all x、y,z E X \ {0}. Hence A is additive.

Putting m = 0 in (22) we get

(24)

j n — I

드 5*1끼

f(x) — /(—⑦) jf(3—"z) —/(—3—"z)

2 2 3-"

A:=0

for all ⑦ G X and all n E N. Taking limit in (24) as n —> oo, we get

(25) —브三지— A(z) 드 〒—늪〒2끼|씨|, ||씨|, ||끼|)
Z Z(丄 _ O J

for all x E X. From (20) and (25) we get

(26)

Hi)-W)1

< |/Mr,(—찌 — w)|| + p⑷...引(=)—3f

1 1
< 5?1 三五—介印IHL INI, IMI) + 흐印II께I, IMI, IMI)으 ( 丄 O 으 J jLi

1
드 r三^印11 끼1’11찌1’11이1}

for all x E X. Replacing x by 3x in (26) and dividing by 3 we get

丄 — o 乂

for all x 6 X. The proof of the uniqueness is similar to the proof of

Theorem 2. □

Define a function H : R十 x R+ x R十 一今 R十 by H(a, 5, c) = (ap 4- 

6흐 + 仁刀)0 where > 0. Then H is homogeneous of degree p > 0. Thus 

we have the following corollaries.
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COROLLARY 4. Assume that 8 >0 and 0 < p < 1. If the mapping 

/ : X —> y satisfies

IIWGr,…)11 幻5 +0(11씨 r + ||< + ||<)

for all x,y, z E X \ {0}? then there is a unique additive mapping 

A : X Y such that

6 3P
|Lf(,) — /(0) — <r)|| < - + 巧三하이|<

for all x E X.

COROLLARY 5. Assume that 1 < p. If the mapping f : X Y 

satisfies f(0) = 0 and

iiw(…수)1匕邵ih< + ih< + ii<>)

for all x、y,z E X \ {0}? then there is a unique additive mapping 

A : X Y such that

3P
||/(z) —A(z)|Krz¥드이 | 씨

for all x E X,
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