JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 14, No.1, June 2001

σ -COHERENT FRAMES

SEUNG ON LEE

ABSTRACT. We introduce a new class of σ -coherent frames and show that $\mathcal{H}A$ is a σ -coherent frame if A is a σ -frame. Based on this, it is shown that a frame is σ -coherent iff it is isomorphic to the frame of σ -ideals of a σ -frame. Finally we show that σ **CohFrm** and σ **Frm** are equivalent.

0. Introduction.

It is well known that for any topological space X, its topology $\Omega(X)$ is a frame. Many efforts have been made to generalize continuous lattices, and to extend corresponding properties to them as appeared in studies of Banaschewski [1, 2], Hoffmann [3, 4], and Madden and Vermeer [7].

Using the way below relation, it is shown that the category **CohFrm** of coherent frames and coherent homomorphisms is coreflective in the category **Frm** of frames and frame homomorphisms, Finally **CohFrm** and **DLatt**, where **DLatt** is the category of distributive lattices and lattice homomorphisms, are equivalent. The purpose of this paper is to introduce a new class of σ -coherent frames as a generalization of coherent frames, and examine its properties. To do so, we introduce σ -frames and countably approximating frames. Throughout this paper, a lattice means a bounded lattice, i.e., a lattice with the top element *e* and the bottom element 0. For terminology not introduced here, we refer to [5].

Received by the editors on April 23, 2001.

²⁰⁰⁰ Mathematics Subject Classifications: 06A99, 54A99, 54D99.

Key words and phrases: σ -frames, δ -frames, frames, σ -coherent frames.

1. σ -frames.

Recall that a subset D of a poset A is called *directed* (countably directed, resp.) if every finite (countable, resp.) subset of D has an upper bound in D. D is called a down set if $D = \downarrow D$ where $\downarrow D =$ $\{y \in A | y \leq x \text{ for some } x \in D\}$, and D an *ideal* (σ -*ideal*, resp.) of A if it is a directed (countably directed, resp.) down set. Let P(X) denote the power set lattice of a set X endowed with the inclusion relation \subseteq . Then Fin(X) denotes the ideal of finite subsets of X in P(X)and Count(X) the σ -ideal of countable subsets of X in P(X). For a distributive lattice A, the set of all ideals (σ -ideals, resp.) is denoted by $\mathcal{J}A$ ($\mathcal{H}A$, resp.), and $\mathcal{J}A$ ($\mathcal{H}A$, resp.) is closed under directed (countably directed, resp.) unions and arbitrary intersections; hence $\mathcal{J}A$ and $\mathcal{H}A$ are complete lattices. If A is a distributive lattice (σ frame, resp.) then $\mathcal{J}A$ and $\mathcal{H}A$ are frames([6]).

DEFINITION 1.1. 1) For x, y in a complete lattice A, x is said to be way below (countably way below, resp.) y, in symbols $x \ll y$ ($x \ll_c y$, resp.), if for any directed (countably directed, resp.) subset D of Awith $y \leq \bigvee D$, there is $d \in D$ with $x \leq d$.

If $x \ll x$ ($x \ll_c x$, resp.), then x is said to be a compact (Lindelöf, resp.) element of A.

2) A complete lattice A is said to be a compact (Lindelöf, resp.) lattice if the top element e of A is a compact (Lindelöf, resp.) element of A.

The set of all compact elements of A will be denoted by K(A), and the set of all Lindelöf elements by L(A).

3) A complete lattice A is said to be a *frame* if for any $x \in A$ and $S \subseteq A$,

$$x \land (\bigvee S) = \bigvee \{x \land s | s \in S\}.$$

4) For frames X and Y, a map $f: X \to Y$ is said to be a *frame*

homomorphism if f preserves arbitrary joins and finite meets.

The class of all frames and frame homomorphisms between them form a category which will be denoted by **Frm**.

Remark 1.2 ([6]). Let A be a complete lattice and $x, y \in A$. Then the following are equivalent:

1) $x \ll_{c} y$.

2) If $y \leq \bigvee X(X \subseteq A)$, then there is $K \in Count(X)$ with $x \leq \bigvee K$.

3) If $y \leq \bigvee I(I \in \mathcal{H}A)$, then $x \in I$.

Remark 1.3 ([6]). Let A be a frame, then the following are equivalent: 1) $x \ll_c y$.

2) If $y = \bigvee X(X \subseteq A)$, then there is $K \in Count(X)$ with $x \leq \bigvee K$. 3) If $y = \bigvee I(I \in \mathcal{H}A)$, then $x \in I$.

PROPOSITION 1.4 ([6]). In a complete Lattice A, one has the following:

1) If $x \ll_c y$, then $x \leq y$. $(x, y \in A)$

2) If $u \leq x \ll_c y \leq v$, then $u \ll_c v$. $(x, y, u, v \in A)$

3) For any sequence (x_n) in A such that $x_n \ll_c y \ (n \in N)$, $\bigvee \{x_n | n \in N\} \ll_c y$.

 $4) \ 0 \ll_c x. \ (x \in A)$

5) If $x \ll y$, then $x \ll_c y$. $(x, y \in A)$

COROLLARY 1.5 ([6]). Let A be a complete lattice, then one has: 1) 0 is a Lindelöf element.

2) If (x_n) is a sequence of Lindelöf elements, then $\bigvee x_n$ is again a Lindelöf element.

Remark 1.6. 1) For a complete lattice A, $\downarrow_c x = \{y \in A | y \ll_c x\}$ is a σ -ideal of A, which is contained in $\downarrow x$.

2) For a lattice $A, \downarrow a$ is a Lindelöf element of $\mathcal{H}A$ for any $a \in A$, because for any countably directed subset \mathcal{E} of $\mathcal{H}A, \downarrow a \subseteq \bigvee \mathcal{E}$ iff $a \in \bigcup \mathcal{E}$ iff $a \in S$ for some $S \in \mathcal{E}$ iff $\downarrow a \subseteq S$ for some $S \in \mathcal{E}$; hence $\downarrow a$ is a Lindelöf element of $\mathcal{H}A$. Thus $\{\downarrow a | a \in A\} \subseteq L(\mathcal{H}A)$.

DEFINITION 1.7. 1) A lattice A is said to be *distributive* if

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

for any $x, y, z \in A$.

2) A lattice with countable joins A is said to be a σ -frame if

$$x \land (\bigvee K) = \bigvee \{x \land k | k \in K\}$$

for any $x \in A$ and $K \in Count(A)$.

EXAMPLE 1.8. 1) Every σ -frame is a distributive lattice, but a distributive lattice need not be a σ -frame. Let $\Gamma(R)$ be the set of all closed subsets of R, where R is the real line endowed with the usual topology. Then $\Gamma(R)$ is a distributive lattice, but not a σ -frame. For $x = \{0\}$ and $K = \{x_n = [\frac{1}{n}, 3 - \frac{1}{n}] | n \in N\}, x \land (\bigvee K) = \{0\}$ but $\bigvee \{x \land x_n | x_n \in K\} = \phi$.

2) A frame is a σ -frame, but the converse need not be true in general. Let $\Gamma(R_c)$ be the set of all closed subsets of R, where R_c is the real line endowed with the cocountable topology. Then $\Gamma(R_c)$ is a σ -frame but not a frame. For $S = \{\{s\} | s \in R - \{1\}\}$ and $x = \{1\}$, $x \wedge (\bigvee S) = x$ but $\bigvee \{x \wedge t | t \in S\} = \phi$.

DEFINITION 1.9. For σ -frames X and Y, a map $f: X \to Y$ is said to be a σ -frame homomorphism if f preserves countable joins and finite meets.

The class of all σ -frames and σ -frame homomorphisms between them forms a category which will be denoted by σ **Frm**. PROPOSITION 1.10. Let A be a σ -frame, then Lindelöf elements of $\mathcal{H}A$ are precisely principal ideals.

Proof. Take any Lindelöf element I of $\mathcal{H}A$, then $I = \bigvee \{ \downarrow x | x \in I \}$. Since $I \ll_c I$, there is $K \in Count(I)$ such that $I \leq \bigvee \{ \downarrow x | x \in K \}$ in $\mathcal{H}A$. Let $a = \bigvee K$, then $\bigvee \{ \downarrow x | x \in K \} = \downarrow a$; hence $I = \downarrow a$. Conversely, $\downarrow a$ is a Lindelöf element of $\mathcal{H}A$ by 2) of Remark 1.6.

2. δ -frames.

In this section, we introduce a concept of δ -frames and study the relations between Lindelöf regular δ -frames and countably approximating frames.

DEFINITION 2.1. A lattice with countable meets is said to be a δ -frame if

$$x \lor (\bigwedge K) = \bigwedge \{ x \lor k | k \in K \}$$

for any $x \in A$ and $K \in Count(A)$.

EXAMPLE 2.2. Every δ -frame is a distributive lattice, but a distributive lattice need not be a δ -frame. Let $\Omega(R)$ be the open set frame of the real line endowed with the usual topology, then $\Omega(R)$ is a distributive lattice but not a δ -frame. So, a frame need not be a δ -frame. Clearly a δ -frame need not be a frame. The σ -frame $\Gamma(R_c)$ in 2) of Example 1.8 is a δ -frame but not a frame.

DEFINITION 2.3. 1) A complete lattice A is said to be a *countably* approximating lattice if

$$x = \bigvee \{ u \in A | u \ll_c x \}$$

for all $x \in A$, equivalently $x = \bigvee \downarrow_c x$.

2) A frame A is said to be regular if $a = \bigvee \{t \in A | t \prec a\}$ for all $a \in A$, where $t \prec a$ iff $t \land x = 0$ and $a \lor x = e$ for some $x \in A$,

or equivalently, $a \vee t^* = e$ for the pseudocomplement $t^* = \bigvee \{s \in A | t \land s = 0\}$ of $t \in A$.

In a frame A and $x_n \in A$ $(n \in N)$, $x_n \prec a$ does not imply $\bigvee x_n \prec a$. In fact, in the open set frame $\Omega(R)$ of the real line endowed with the usual topology, $x_n = (\frac{1}{n}, 3 - \frac{1}{n}) \prec (0,3)$ for any $n \in N$ but $\bigvee x_n = (0,3) \not\prec (0,3)$. In a compact regular frame, $x \ll y$ iff $x \prec y$. But in a Lindelöf regular frame, $x \ll_c y$ does not imply $x \prec y$ in general. In the Lindelöf regular frame $\Omega(R)$, $(0,3) \ll_c (0,3)$ but $(0,3) \not\prec (0,3)$. If A is a δ -frame, $x_n \prec a$ implies $\bigvee x_n \prec a$; hence $\{t \in A | t \prec a\}$ is a σ -ideal of A. So we have the following:

Remark 2.4. Let A be a Lindelöf frame, then we have:

1) If $x \prec y$, then $x \ll_c y \ (x, y \in A)$.

2) If A is a regular δ -frame, then $x \prec y$ iff $x \ll_c y$ $(x, y \in A)$.

Proof. 1) Suppose $x \prec y$ and $y \leq \bigvee S$ for any $S \subseteq A$. Then $x^* \lor y = e$ implies $x^* \lor (\bigvee S) = e$. Since A is a Lindelöf frame, there is $K \in Count(S)$ with $x^* \lor (\bigvee K) = e$. Hence $x \leq \bigvee K$ for some $K \in Count(S)$. So $x \ll_c y$.

2) Let $x \ll_c y$ and $y = \bigvee \{t \in A | t \prec y\}$. Then $x \in \{t \in A | t \prec y\}$, because $\{t \in A | t \prec y\}$ is a σ -ideal of A. So $x \prec y$.

Remark 2.5. Every Lindelöf regular frame is countably approximating, because for any $a \in A$, $a = \bigvee \{x \in A | x \prec a\} \leq \bigvee \downarrow_c a \leq \bigvee \downarrow$ $a \leq a$ implies $a = \bigvee \downarrow_c a$. But the converse need not be true. The open set frame $\Omega(R_c)$ of the real line with the cocountable topology is countably approximating, but not regular.

3. σ -coherent frames.

In this section, we introduce a concept of σ -coherent frames and study the relations between σ -coherent frames and σ -frames. DEFINITION 3.1. 1) A frame A is said to be *coherent* if $K(A) = \{a \in A | a \text{ is a compact element}\}$ is a sublattice of A and K(A) generates A.

2) A frame A is said to be σ -coherent if $L(A) = \{a \in A | a \text{ is a Lindelöf element}\}$ is a sub σ -frame of A and L(A) generates A.

In a frame A, L(A) is closed under countable joins. Thus we have:

L(A) is a sub σ -frame of A iff $e \in L(A)$ and for $x, y \in L(A), x \land y \in L(A)$.

Remark 3.2. 1) The open set frame $\Omega(R_c)$ in Remark 2.5 is a σ coherent frame. In case, L(A) = A.

2) A σ -coherent frame need not be a coherent frame. For example, the complete chain [0, 1] with the usual order \leq is a σ -coherent frame but not a coherent frame.

3) Every σ -coherent frame A is a countably approximating frame, because for any $a \in A$, $a = \bigvee (\downarrow a \cap L(A)) \leq \bigvee \downarrow_c a \leq a$ implies $a = \bigvee \downarrow_c a$.

4)Let $T = [0, \Omega) \cup \{z_1, z_2\}$, where Ω is the first uncountable ordinal, $x \leq z_1, z_2$ for all $x \in [0, \Omega)$ and $[0, \Omega)$ is a chain with the ordinal order \leq . Then $\mathcal{D}T = \{U \subseteq T | U = \downarrow U\}$ is a countably approximating frame and $L(\mathcal{D}T) = \{T, \downarrow z_1, \downarrow z_2\} \cup \{\downarrow x | x \in [0, \Omega)\}$. Consider $\downarrow z_1$ and $\downarrow z_2$ are Lindelöf elements of $\mathcal{D}T$, but $\downarrow z_1 \cap \downarrow z_2 = [0, \Omega)$ is not a Lindelöf element of $\mathcal{D}T$, because $[0, \Omega) = \bigcup \{\downarrow x | x \in [0, \Omega)\}$ has no countable subcover. So $\mathcal{D}T$ is not a σ -coherent frame, because $L(\mathcal{D}T)$ is not a sub σ -frame of $\mathcal{D}T$. But $L(\mathcal{D}T)$ generates $\mathcal{D}T$.

Consider $\downarrow z_1$ and $\downarrow z_2$ are Lindelöf elements of $\mathcal{D}T$, but $\downarrow z_1 \cap \downarrow z_2$ is not a Lindelöf elements of $\mathcal{D}T$. So in a frame A, the relation \ll_c is not closed under finite meets. That is, $x \ll_c a$ and $x \ll_c b$ need not imply $x \ll_c a \wedge b$ for some $x, a, b \in A$, where A is a frame.

Let A be a frame, $\bigvee : \mathcal{H}A \to A$ is the map defined by $\bigvee(I) = \bigvee I$, and $\downarrow : A \to \mathcal{H}A$ the map defined by $d(x) = \downarrow x$. Then the frame

SEUNG ON LEE

homomorphism $\bigvee : \mathcal{H}A \to A$ is a left adjoint of the map $\downarrow : A \to \mathcal{H}A$. In case, \bigvee preserves arbitrary joins and \downarrow preserves arbitrary meets.

PROPOSITION 3.3. Let A be a complete lattice, then the followings are equivalent:

1) A is a countably approximating lattice.

2) For each $x \in A$, the set $\downarrow_c x$ is the smallest σ -ideal I with $x \leq \bigvee I$.

3) For each $x \in A$, there is a smallest σ -ideal I with $x \leq \bigvee I$.

4) The map $\bigvee : \mathcal{H}A \to A$ has a left adjoint.

5) The map $\bigvee : \mathcal{H}A \to A$ preserves arbitrary meets and joins.

A is a countably approximating lattice iff for each $x \in A$, the set $\downarrow_c x$ is the smallest σ -ideal I with $x \leq \bigvee I$. So $\downarrow_c : A \to \mathcal{H}A$ is a left adjoint of the map $\bigvee : \mathcal{H}A \to A$ where A is a countably approximating lattice. So the map $\downarrow_c : A \to \mathcal{H}A$ preserves arbitrary joins if A is a countably approximating lattice.

PROPOSITION 3.4. In **Frm**, let A be a regular δ -frame. Then A is a Lindelöf frame iff the frame homomorphism $\bigvee : \mathcal{H}A \to A$ has a right inverse.

Proof. (\Leftarrow) Let $h : A \to \mathcal{H}A$ be a right inverse of $\bigvee : \mathcal{H}A \to A$. Then $\bigvee \circ h = 1_A$ and h is an 1-1 frame homomorphism. So A is isomorphic to h(A) and h(A) is a subframe of $\mathcal{H}A$. Since $\mathcal{H}A$ is a Lindelöf frame, A is also a Lindelöf frame.

 (\Rightarrow) Define $h : A \to \mathcal{H}A$ as $h(a) = \{t \in A | t \prec a\}$ for all $a \in A$, then h(a) is a σ -ideal in A, because A is a δ -frame; hence h is a map. By Remark 2.5, $h(a) = \downarrow_c a$ and $\bigvee \circ h = 1_A$. Since the relation \prec is closed under finite meets, the map h is closed under finite meets. Furthermore, $\downarrow_c : A \to \mathcal{H}A$ is a left adjoint of the map $\bigvee : \mathcal{H}A \to A$, so the map h preserves arbitrary joins. In all, h is a

68

frame homomorphism.

DEFINITION 3.5. For σ -coherent frames X and Y, a frame homomorphism $h: X \to Y$ is said to be σ -coherent if $h(L(X)) \subseteq L(Y)$.

The class of all σ -coherent frames and σ -coherent homomorphisms between them forms a category which will be denoted by σ **CohFrm**.

PROPOSITION 3.6. Let A be a σ -frame, then we have:

1) $\mathcal{H}A$ is a σ -coherent frame.

2) $L(\mathcal{H}A)$ is a σ -frame.

3) The down map $\downarrow: A \to L(\mathcal{H}A)$ is an isomorphism.

Proof. 1) $L(\mathcal{H}A) = \{\downarrow a | a \in A\}$ by Proposition 1.10. Consider $\downarrow a \land \downarrow b = \downarrow (a \land b) \in L(\mathcal{H}A)$ and $\mathcal{H}A$ is a Lindelöf frame. For any $I \in \mathcal{H}A, I = \bigvee \{\downarrow x | x \in I\}$. Thus $\mathcal{H}A$ is σ -coherent.

2) It follows from 1) together with the fact that $L(\mathcal{H}A)$ is a subset of a frame $\mathcal{H}A$

3) By Proposition 1.10, the down map \downarrow is an 1-1 onto map which is closed under arbitrary meets. Moreover $\downarrow (\bigvee K) = \bigvee \{\downarrow k | k \in K\}$ for any $K \in Count(A)$, so \downarrow is a σ -frame homomorphism. Hence \downarrow is an isomorphism.

Remark 3.7. Let A be a σ -coherent frame, then we have:

1) $\downarrow (\downarrow a \cap L(A)) = \downarrow_c a \text{ for all } a \in A.$

2) $\downarrow (\downarrow a \cap L(A)) = \downarrow a \text{ for all } a \in L(A).$

Proof. 1) Take any $x \in \downarrow (\downarrow a \cap L(A))$, then there is $y \in \downarrow a \cap L(A)$ with $x \leq y$; hence $x \leq y \ll_c y \leq a$. Thus $x \ll_c a$; hence $x \in \downarrow_c a$. Conversely, take any $x \in \downarrow_c a$, then $x \ll_c a$, and $a = \bigvee (\downarrow a \cap L(A))$ since A is σ -coherent. Thus $a = \bigvee (\downarrow (\downarrow a \cap L(A)))$ and $\downarrow (\downarrow a \cap L(A))$ is a σ -ideal of A; hence $x \in \downarrow (\downarrow a \cap L(A))$.

2) It follows from 1) together with the fact that for $a \in L(A), \downarrow_c a$ = $\downarrow a$.

69

SEUNG ON LEE

PROPOSITION 3.8. A frame is σ -coherent if and only if it is isomorphic to the frame of σ -ideals of a σ -frame.

Proof. (\Rightarrow) Let A be a σ -coherent frame, then L(A) is a σ -frame and $\mathcal{H}L(A)$ is a σ -coherent frame. Since the inclusion map $i: L(A) \to A$ is a σ -frame homomorphisms, there is a unique frame homomorphism $f: \mathcal{H}L(A) \to A$ with $f \circ \downarrow = i$ for the down map $\downarrow : A \to \mathcal{H}L(A)$. In case, $f(I) = \bigvee I$. Define $g: A \to \mathcal{H}L(A)$ by $g(a) = \downarrow a \cap L(A)$. Then $0 \in g(a)$ and g(a) is a down set. Furthermore, for $x_n \in g(a) \ (n \in N), \ \bigvee\{x_n | n \in N\} \in g(a);$ hence g is well-defined. Take any $I \in \mathcal{H}L(A)$, then g(f(I)) = I and f(g(a)) = a for all $a \in A$. So f is an isomorphism.

 (\Leftarrow) It is immediate from 1) of Proposition 3.6.

THEOREM 3.9. σ Frm and σ CohFrm are equivalent.

Proof. For a σ -frame homomorphism $h: A \to B$, there is a unique frame homomorphism $\mathcal{H}h : \mathcal{H}A \to \mathcal{H}B \ (\mathcal{H}h(I) = \downarrow h(I))$. $\mathcal{H}h$ is σ -coherent, because for any $\downarrow a \ (a \in A), \ \mathcal{H}h(\downarrow a) = \downarrow h(a) \in L(\mathcal{H}B).$ Thus \mathcal{H} : $\sigma \mathbf{Frm} \to \sigma \mathbf{CohFrm} \ (A \to \mathcal{H}A)$ is a functor. For any σ coherent homomorphism $f: C \to D, L(f): L(C) \to L(D)(L(f)(x))$ f(x) is a σ -frame homomorphism. Thus $\mathcal{L} : \sigma \mathbf{CohFrm} \to \sigma \mathbf{Frm}$ $(C \to L(C))$ is a functor. For each σ -frame A, the correspondence $A \to \mathcal{H}A$ is functorial and we have a functor $\mathcal{H}: \sigma \mathbf{Frm} \to \sigma \mathbf{CohFrm}$. For each σ -coherent frame M, the correspondence $M \to L(M)$ is also functorial and we have a functor \mathcal{L} : $\sigma CohFrm \rightarrow \sigma Frm$. The functor \mathcal{H} takes each σ -frame A to $\mathcal{H}A$ with a map $\eta_A: A \to L(\mathcal{H}A)$ $(\eta_A(a) = \downarrow a)$. Moreover, η_A is an isomorphism for all A. For any σ -frame homomorphism $h : A \to B, L(\mathcal{H}h) : L(\mathcal{H}A) \to L(\mathcal{H}B)$ $(L(\mathcal{H}h)(\downarrow a) = \downarrow h(a))$ is a σ -coherent homomorphism and $\eta_B \circ h =$ $L(\mathcal{H}h) \circ \eta_A$. Thus $(\eta_A)_A : 1 \to \mathcal{L} \circ \mathcal{H}$ is a natural isomorphism for all $A \in \sigma Frm$. The functor \mathcal{L} takes each σ -coherent frame M to σ -coherent frames

L(M) with a map $\epsilon_M : \mathcal{H}L(M) \to M$ ($\epsilon_M(I) = \bigvee I$). ϵ_M is an isomorphism for all M. For any σ -coherent homomorphism $g: M \to P$, $\mathcal{H}L(g) : \mathcal{H}L(M) \to \mathcal{H}L(P)$ ($\mathcal{H}L(g)(I) = \downarrow g(I)$) is a σ -frame homomorphism and $g \circ \epsilon_M = \epsilon_P \circ \mathcal{H}L(g)$. Thus ($\epsilon_M)_M : \mathcal{H} \circ \mathcal{L} \to 1$ is a natural isomorphism for all $M \in \sigma$ **CohFrm**. In all \mathcal{H} is an equivalence between σ **Frm** and σ **CohFrm**. \square

References

- 1. B. Banaschewski, *Coherent frames*, Lect. Notes in Math. 871 (1981), Springer-Verlag, 1-11.
- 2. B. Banaschewski, The duality of distributive σ -continuous lattices, Lect. Notes in Math. 871 (1981), Springer-Verlag, 12-19.
- 3. R. -E. Hoffmann, Continuous posets and adjoint sequences, Semigroup Forum 8 (1979), 173-188.
- 4. R. -E. Hoffmann, Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications, Lect. Notes in Math. 871 (1981), Springer-Verlag, 159-208.
- 5. P. T. Johnstone, Stone Space, Cambridge Univ. Press, Cambridge, 1982.
- 6. S. O. Lee, On Countably Approximating Lattices, J. of KMS, 25 (1988), 11-23.
- 7. J. Madden and J. Vermeer, Lindelöf locales and real compactness, Math. Proc. Cambridge Phil. Soc. 99 (1986), 473-480.

DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU, CHUNGBUK, 361-763, KOREA

E-mail: solee@chungbuk.ac.kr