JORDAN DERIVATIONS MAPPING INTO THE JACOBSON RADICAL

  • Received : 2001.01.29
  • Published : 2001.07.18

Abstract

In this paper we show that the following results remain valid for arbitrary Jordan derivations as well: Let d be a derivation of a complex Banach algebra A. If $d^2(x){\in}rad(A)$ for all $x{\in}A$, then we have $d(A){\subseteq}rad(A)$ ([5, p. 243]), and in a case when A is unital, $d(A){\subseteq}rad(A)$ if and only if sup{$r(z^{-1}d(z)){\mid}z{\in}A$ invertible} < ${\infty}$([3]), where rad(A) stands for the Jacobson radical of A, and r(${\cdot}$) for the spectral radius.

Keywords