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Abstract. We investigate the relation아lips between the Gottlieb 
groups and the generalized Gottlieb groups, and study some proper
ties of the generalized Gottlieb groups. Lee and Woo [5] proved that 
Gz(X, zi, X x y) 으 7rn(y). We can easily re-prove 나le above
main theorem of [5] using some properties of the generalized Gottlieb 

groups, and obtain a more powerful result as follows; if F 鸟 E 呉 B is 
a homotopically trivial fibration, then Gn(F, i, E) 은 7rn(B) ㊉ Gn(F).

1. Introduction

Let £(A, X) be the space of maps from A to X with the compact 
open topology. For a based map / : A —> X, L(A,X; /) will denote 
the path component of L(A, X) containing f. Let uj : L(A, X; /) —> X 
be the evaluation map given by 以。)= for a E L(A, X; /), where 
* is a base point of A. Gottlieb [1, 2] defined and studied the evalua
tion subgroup 3#(7质(Z(X,XJL))) = Gn(X) called by Gottlieb group. 
Woo and Kim [9] defined the generalized Gottlieb group /, X) 
and showed that 3#(确(£(&X;/))/)) = Gn(A? /,X). In this paper, 
we investigate the relationships between the Gottlieb groups and the 
generalized Gottlieb groups, and study some properties of the gen
eralized Gottlieb groups Gn(A7 /, X). Lee and Woo [5] proved that
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Gn(X山,X X Y) 스 (為(X) ㊉ 7Tn(y) as the main theorem using com- 
plet시y different method. The notation in [5] differs from ours. In 
particular, they denoted Gn(A, inclusion^ X) by A). We can 
easily re-prove the above main theorem of [5] using some properties 
of the generalized Gottlieb groups, and obtain a more powerful result 

as follows; if F A E A B is a homotopically trivial fibration, then 
Gn(F, z, E) 으 7rn(B) ® Gn(F). Throughout this paper, space means a 
space of the homotopy type of a locally finite connected CW complex. 
The base point as well as the constant map will be denoted by *• For 
simplicity, we use the same symbol for a map and its homotopy class.

2. Some properties of the generalized Gottlieb groups
Let / : A —> X be a based map. A based map a : B X is 

called f-cyclic if there is a map a : B x A X such that aj 〜 
▽(a V /) : B V A —> X, where j:B\/A-^BxA is the illusion and 
▽ : X V X T X is the folding map. We say that a is an affiliated map 
to a. The set of all homotopy class of /-cyclic maps from B to X is 
denoted by G(B; A, /, X). For the case B = SnG(S”; A, /, X) will be 
denoted by Gn(A, /, X), Also, a based map a i B X is called cyclic 
if a is lx-cyclic. The set of all homotopy class of cyclic maps from B 
to X is denoted by G(B;X、). For the case B = Sn, G(S气 X) will be 
denoted by G%(X).

Remark 2.1. (1) Gn(X) = n(Gn(A,/,X)|/ ： A X is a map 
and A is a space}. For a G Gn(X), there is an affiliated map 
a : Sn x X X, The composition

AxSnf-^ XxSn AX

establishes that a G Gn(A,/, X). Since f is arbitrary, a G 
D/Gn(A,/,X). On the other hand, if we take A = X and 
/ = 1 : X —> X, then, the converse holds.

(2) G”X,1,X) = GJX) and = 7「JX)
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In general,(釦(X) C C 扁(X) for any map f : A X.
The following example shows that they can be different from each other.

EXAMPLE 2.2. It is well known [2] that Gs(S5) = 2Z, Gn{X x Y) 스 
G%(X) ® Gn(Y) and G2(52) = 0. Consider the ia시usion 財 :

S5 x S5 and the projection : 55 x —> S5. Then we know, from 
the above result and Corollary 2.9, that G^(S5 x S^) 스 2易 ㊉ 2% 尹 

G5(S5, $5 x $5) 스 2易 0 易 尹 7T5(S5 x $5) 스 易 ㊉ 么 1% also know,

from Proposition 2.5, that G%(S応) = G^(S5 x S5,pi, 55) 스 2易 U 7「5(S応). 

On the other hand： consider the Hopf map r] : S3 S2. Then there 
exists a map F : S3 x S2 —> S2 such that Fj ~ ▽(77 V 1). Thus we 
know, from Corollary 27? that G2(52) = 0 U G2(S3,77, S2) = tt2(S2).

Since A is a locally compact, any continuous map a : (S">*) T 
(L(A, X; /), /) corresponds to a continuous map a : Sn x A 
where d(s, a) = &(s)(q). Thus we have the following proposition.

Proposition 2.3. [9] Let 3 : L(A,X； f) t X be the evaluation 
map. Then a;#(7rn(L(A, X; /))) = Gn(A, /, X).

We can also easily show that /, X) is a homotopy type invari
ant.

PROPOSITION 2.4. (1) If g : X Y is a homotopy equivalence^

then g# : Gn(A,f,X) T Gn{A^gf.Y) is an isomorphism,
(2) If h : B A is a homotopy equivalence^ then f, X)= 

(W"x).

PROPOSITION 2.5. If f : A X has a right homotopy inverse^ then 
Gn(X) = Gn(AJ,X).

Proof. Let a E Gn(A, /, X). Then there exists a map a : Sn x A
X such that aj 〜 V(a V /), where j : 5n V A —> 5n x A is the 
in시usion. Let g : X —> 厶 be a right homotopy inverse of f : A X. 

Consider the composition F = a(l x g) : Sn x X 쑥 Sn x A X.
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Then Fjf — a(l x g)jf = qjj(1 V g)〜V(a V fg)〜V(a V 1), where 
顶' : S" V X —> S” x X is 나le in시usion. Thus a E Gn(X). □

THEOREM 2.6. f : A X is a cyclic map if and only if G(B; A, /, X)= 
[B, X] for any space B.

Proof. Let a E [B^X] and f : A X be cyclic. Then there is a map 
F : Ax X X such that Fj 〜▽(/‘、/1), where j : A V X Ax X is 

the inclusion. Consider the map a =■ F(1 x a)T : B x A Ax B '•스尹 

厶 x X -& X, where T : BxA-^AxB is given by T (如 a，) = (a, 6). 

Then a is /-cyclic and a G G(B; A, /, X). On the other hand, suppose 
that G(B; & /, X) = [B, X] for any space B. Take B — X and consider 
나le identity map lx ： X —> X. Since lx G G(B; A, /,X), f : A X 
is cyclic. □

Corollary 2.7. If f ： A X is cyclic, then /,X) = 7rn(X) 
for all n.

For any fibration sequence • • • —> QE T QB -4 F A E A B, by 

([4] p.97 Proposition 11.3), d : QB —> F is cyclic. Thus we have that 
Gn(QB,d,F) = 7rn(F) for ^11 n.

Theorem 2.8. Gn(AJ,X x Y) 스 Gn(A,P1f7X) ® Gn(A,p2f.Y).

Proof. Define h : Gn(A,f,X x M) T Gn(A,P1/, X) ffi K)
by /i(q) = (p1a^p2a). Since a E Gn(A^ /, X x F), there is a map 
a : Sn x A X xY such that aj ~ V(aVf), where j : Sn\/ A Snx A 
is the inclusion. Then consider the maps = p^a : Sn x A X and 
a2 = m: 5n x A —> y. Then p^a E Gn(A,pi/, X) and p2a E 
Gn(A,p2f, Y). Thus h(a) 6 Gn(A,pif,X) ® Gn(A,p2f, Y). Clearly h 
is a homomorphism. Also, define k : Gn(A,pif, X) © Gn(A,p2f, —> 
Gn(A, /, X x y) by a2) = (% x %)△. Since 皿 G Gn(A,pi/, X) 
and 值2 € G，n，(A)p2L F), there are affiliated maps : Sn x A X and

： Sn x A Y respectively. Consider the map a = (&i x d2)(l x T x
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1)(A X △) ： S”〉c4 △스? S" S”〉c4〉C4 1X4X1 Sn x A x x A °以笋 

X x Y. Since a ~ V((ai x(攻於 V /), fe(ai,a2) G Gn(A^f^X x Y). 
Clearly kh = 1 and hk = 1. This proves the theorem. 口

In [5], Lee and Woo proved that GJX打“X x M) 스 (爲,(X) ® 扁(丫)・ 

Their notation differs from ours. In particular, they denoted 징侃(厶， 

inclusion,X) by Gn(X, A). From Remark 2.1(2), we can easily obtain 
their theorem as the following corollary.

Corollary 2.9. Gn(X, 牛 XxM) 스 G%(X)㊉办(丫) and Gn(Y, z2, Xx 

K) 스 7脇,(X) ® Gn(Y).

A fibration F A E A B is called homotopically trivial if there exist 
homotopy equivalences h : E T B x F and h\p : F T F such the 

diagram

F ―으T E —으T B

M d II
F -끄T BxF -* B

is homotopy commutative. From Proposition 2.4(1), (2) and Corollary 
2.9, we can obtain more powerful result.

Proposition 2.10. If F 与 E 鸟 B is a homotopically trivial fibra

tion^ then Gn(F, i, E) 으 7rn(B) ㊉ Gn(F).
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