SOME PROPERTIES OF THE GENERALIZED GOTTLIEB GROUPS

Yeon Soo Yoon

Abstract

We investigate the relationships between the Gottlieb groups and the generalized Gottlieb groups, and study some propertjes of the generalized Gottlieb groups. Lee and Woo [5] proved that. $G_{n}\left(X, i_{1}, X \times Y\right) \cong G_{n}(X)\left(\mathbb{)} \pi_{n}(Y)\right.$. We can easily re-prove the above main theorem of [5] using some properties of the generalized Gottlieb groups, and obtain a more powerful result as follows; if $F \xrightarrow{i} E \xrightarrow{P} B$ is a homotopically trivial fibration, then $G_{n}(F, i, E) \cong \pi_{n}(B) \oplus G_{n}(F)$.

1. Introduction

Let $L(A, X)$ be the space of maps from A to X with the compact open topology. For a based map $f: A \rightarrow X, L(A, X ; f)$ will denote the path component of $L(A, X)$ containing f. Let $\omega: L(A, X ; f) \rightarrow X$ be the evaluation map given by $\omega(\alpha)=\alpha(*)$ for $\alpha \in L(A, X ; f)$, where * is a base point of A. Gottlieb $[1,2]$ defined and studied the evaluation subgroup $\omega_{\#}\left(\pi_{n}(L(X, X, 1))\right)=G_{n}(X)$ called by Gottlieb group. Woo and Kim [9] defined the generalized Gottlieb group $G_{n}(A, f, X)$ and showed that $\omega_{\#}\left(\pi_{n}(L(A, X ; f), f)\right)=G_{n}(A, f, X)$. In this paper, we investigate the relationships between the Gottlieb groups and the gencralized Gottlieb groups, and study some properties of the generalized Gottlieb groups $G_{n}(A, f, X)$. Lee and Woo [5] proved that

[^0]$C_{n}\left(X, i_{1}, X \times Y\right) \cong G_{n}(X) \ominus \pi_{n}(Y)$ as the main theorem using completely different method. The notation in [5] differs from ours. In particular, they denoted $G_{n}(A$, inclusion, $X)$ by $G_{n}(X, A)$. We can easily re-prove the above main theorem of [5] using some properties of the generalized Gottlieb groups, and obtain a more powerful result as follows; if $F \xrightarrow{i} E \xrightarrow{p} B$ is a homotopically trivial fibration, then $G_{n}(F, i, E) \cong \pi_{n}(B) \oplus G_{n}\left(I^{\prime}\right)$. Throughout this paper, space means a space of the homotopy type of a locally finite connected CW complex. The base point as well as the constant map will be denoted by *. For simplicity, we use the same symbol for a map and its homotopy class.

2. Some properties of the generalized Gottlieb groups

Let $f: A \rightarrow X$ be a based map. A based map $\alpha: B \rightarrow X$ is called f-cyclic if there is a map $\alpha: B \times A \rightarrow X$ such that $\alpha j \sim$ $\nabla(\alpha \vee f): B \vee A \rightarrow X$, where $j: B \vee A \rightarrow B \times A$ is the inclusion and $\nabla: X \vee X \rightarrow X$ is the folding map. We say that $\bar{\alpha}$ is an affiliated map to α. The set of all homotopy class of f-cyclic maps from B to X is denoted by $G(B ; A, f, X)$. For the case $B=S^{m}, G\left(S^{n} ; A, f, X\right)$ will be denoted by $G_{n}(A, f, X)$. Also, a based map $\alpha: B \rightarrow X$ is called cyclic if α is 1_{X}-cyclic. The set of all homotopy class of cyclic maps from B to X is denoted by $G(B ; X)$. For the case $B=S^{n}, G\left(S^{n}, X\right)$ will be denoted by $G_{n}(X)$.

Remark 2.1. (1) $G_{n}(X)=\cap\left\{G_{n}(A, f, X) \mid f: A \rightarrow X\right.$ is a map and A is a space $\}$. For $\alpha \in G_{n}(X)$, there is an affiliated map $\bar{\alpha}: S^{n} \times X \rightarrow X$. The composition

$$
A \times S^{n} \xrightarrow{f \times 1} X \times S^{n} \xrightarrow{\bar{\alpha}} X
$$

establishes that $\alpha \in G_{n}(A, f, X)$. Since f is arbitrary, $\alpha \in$ $\cap_{f} G_{n}(A, f, X)$. OII the other hand, if we take $A=X$ and $f=1: X \rightarrow X$, then the converse holds.
(2) $G_{n}(X, 1, X)=G_{n}(X)$ and $G_{n}(A, *, X)=\pi_{n}(X)$

In general, $G_{n}(X) \subset G_{n}(A, f, X) \subset \pi_{n}(X)$ for any map $f: A \rightarrow X$. The following example shows that they can be different from cach other.

Example 2.2. It is well known [2] that $G_{5}\left(S^{5}\right)=2 \mathbb{Z}, G_{n}(X \times Y) \cong$ $G_{n}(X) \oplus G_{n}(Y)$ and $G_{2}\left(S^{2}\right)=0$. Consider the inclusion $i_{1}: S^{5} \rightarrow$ $S^{5} \times S^{5}$ and the projection $p_{1}: S^{5} \times S^{5} \rightarrow S^{5}$. Then we know, from the above result and Corollary 2.9 , that $G_{5}\left(S^{5} \times S^{5}\right) \cong 2 \mathbb{Z}$ (1) $2 \mathbb{Z} \neq$ $G_{5}\left(S^{5}, i_{1}, S^{5} \times S^{5}\right) \cong 2 \mathbb{Z} \oplus \mathbb{Z} \neq \pi_{5}\left(S^{5} \times S^{5}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$. We also know, from Proposition 2.5, that $G_{5}\left(S^{5}\right)=G_{5}\left(S^{5} \times S^{5}, p_{1}, S^{5}\right) \cong 2 \mathbb{Z} \subset \pi_{5}\left(S^{5}\right)$. On the other hand, consider the Hopf map $\eta: S^{3} \rightarrow S^{2}$. Then there exists a map $F: S^{3} \times S^{2} \rightarrow S^{2}$ such that $F j \sim \nabla(\eta \vee 1)$. Thus we know, from Corollary 2.7, that $G_{2}\left(S^{2}\right)=0 \subset G_{2}\left(S^{3}, \eta, S^{2}\right)=\pi_{2}\left(S^{2}\right)$.

Since A is a locally compact, any contimuous map $\hat{\alpha}:\left(S^{n}, *\right) \rightarrow$ $(L(A, X ; f), f)$ corresponds to a continuous map $\alpha: S^{n} \times A \rightarrow X$, where $\bar{\alpha}(s, a)=\hat{\alpha}(s)(a)$. Thus we have the following proposition.

Proposition 2.3. [9] Let $w: L(A, X ; f) \rightarrow X$ be the cevaluation map. Then $\omega_{\#}\left(\pi_{n}(L(A, X ; f))\right)=G_{n}(A, f, X)$.

We can also easily show that $G_{n}(A, f, X)$ is a homotopy type invariant.

Proposition 2.4. (1) If $g: X \rightarrow Y$ is a homotopy equivalence, then $g_{\#}: G_{n}(A, f, X) \rightarrow G_{n}(A, g f, Y)$ is an isomorphism.
(2) If $h: B \rightarrow A$ is a homotopy equivalence, then $G_{n}(A, f, X)=$ $G_{n}(B, f h, X)$.

Proposition 2.5. If $f: A \rightarrow X$ has a right homotopy inverse, then $G_{n}(X)=G_{n}(A, f, X)$.

Proof. Let $\alpha \in G_{n_{l}}(A, f, X)$. Then there exists a map $\alpha: S^{n} \times A \rightarrow$ X such that $\alpha j \sim \nabla(\alpha \vee f)$, where $j: S^{n} \vee A \rightarrow S^{n} \times A$ is the inclusion. Let $g: X \rightarrow A$ be a right homotopy inverse of $f: A \rightarrow X$. Consider the composition $F=\alpha(1 \times g): S^{n} \times X \xrightarrow{1 \times g} S^{n} \times A \xrightarrow{\alpha} X$.

Then $F j^{\prime}=\bar{\alpha}(1 \times g) j^{\prime}=\bar{\alpha} j(1 \vee g) \sim \nabla(\alpha \vee f g) \sim \nabla(\alpha \vee 1)$, where $j^{\prime}: S^{n} \vee X \rightarrow S^{n} \times X$ is the inclusion. Thus $\alpha \in G_{n}(X)$.

Theorem 2.6. $f: A \rightarrow X$ is a cyclic map if and only if $G(B ; A, f, X)=$ [$B, X]$ for any space B.

Proof. Let $\alpha \in[B, X]$ and $f: A \rightarrow X$ be cyclic. Then there is a map $F: A \times X \rightarrow X$ such that $F j \sim \nabla(f \vee 1)$, where $j: A \vee X \rightarrow A \times X$ is the inclusion. Consider the map $\bar{\alpha}=F^{\prime}(1 \times \alpha)^{\prime}: B \times A \xrightarrow{T} A \times B \xrightarrow{1 \times \alpha}$ $A \times X \xrightarrow{F} X$, where $T: B \times A \rightarrow A \times B$ is given by $T(b, a)=(a, b)$. Then α is \int-cyclic and $\alpha \in G(B ; A, f, X)$. On the other hand, suppose that $G(B ; A, f, X)=[B, X]$ for any space B. Take $B=X$ and consider the identity map $1_{X}: X \rightarrow X$. Since $1_{X} \in G(B ; A, f ; X), f: A \rightarrow X$ is cyclic.

Corollary 2.7. If $f: A \rightarrow X$ is cyclic, then $G_{n}(A, f, X)=\pi_{n}(X)$ for all n.

For arty fibration sequence $\cdots \rightarrow \Omega E \rightarrow \Omega B \xrightarrow{\partial} F \xrightarrow{i} E \xrightarrow{p} B$, by ([4] p. 97 Proposition 11.3), $\partial: \Omega B \rightarrow F$ is cyclic. Thus we have that $G_{n}(\Omega B, \partial, F)=\pi_{n}(F)$ for all n.

THEOREM 2.8. $G_{n}(A, f, X \times Y) \cong G_{n}\left(A, p_{1} f, X\right) \ominus G_{n}\left(A, p_{2} f, Y\right)$.
Proof. Define $h: G_{n}(A, f, X \times Y) \rightarrow G_{n}\left(A, p_{1} f, X\right) \oplus G_{n}\left(A, p_{2} f, Y\right)$ by $h(\alpha)=\left(p_{1} \alpha, p_{2} \alpha\right)$. Since $\alpha \in G_{n}(A, f, X \times Y)$, there is a map $\bar{\alpha}: S^{n} \times A \rightarrow X \times Y$ such that $\bar{\alpha} j \sim \nabla(\alpha \vee f)$, where $j: S^{n} \vee A \rightarrow S^{n} \times A$ is the inchusion. Then consider the maps $\bar{\alpha}_{1}=p_{1} \bar{\alpha}: S^{n} \times A \rightarrow X$ and $\dot{\alpha}_{2}=p_{2} \alpha: S^{n} \times A \rightarrow Y$. Then $p_{1} \alpha \in G_{n}\left(A, p_{1} f, X\right)$ and $p_{2} \alpha \in$ $G_{n}\left(A, p_{2} f, Y\right)$. Ihus $h(\alpha) \in G_{n}\left(A, p_{1} f, X\right) \oplus G_{n}\left(A, p_{2} f, Y\right)$. Clearly h is a homomorphism. Also, define $k: G_{n}\left(A, p_{1} f, X\right) \ominus G_{n}\left(A, p_{2} f, Y\right) \rightarrow$ $C_{n}(A, f, X \times Y)$ by $k\left(\alpha_{1}, \alpha_{2}\right)=\left(\alpha_{1} \times \alpha_{2}\right) \Delta$. Since $\alpha_{1} \in G_{n}\left(A, p_{1} f, X\right)$ and $\alpha_{2} \in G_{n}\left(A, p_{2} f, Y\right)$, there are affiliated maps $\bar{\alpha}_{1}: S^{n} \times A \rightarrow X$ and $\ddot{\alpha}_{2}: S^{n} \times A \rightarrow Y$ respectively. Consider the map $\bar{\alpha}=\left(\bar{\alpha}_{1} \times \bar{\alpha}_{2}\right)(1 \times T \times$

1) $(\Delta \times \Delta): S^{n} \times A \xrightarrow{\Delta \times \Delta} S^{n} \times S^{n} \times A \times A \xrightarrow{1 \times T \times 1} S^{n} \times A \times S^{n} \times A \xrightarrow{\bar{\alpha}_{1} \times \bar{\sigma}_{2}}$ $X \times Y$. Since $\bar{\alpha} \sim \nabla\left(\left(\alpha_{1} \times \alpha_{2}\right) \Delta \vee f\right), k\left(\alpha_{1}, \alpha_{2}\right) \in G_{n}(A, f, X \times Y)$. Clearly $k h=1$ and $h k=1$. This proves the theorem. In [כ], Lee and Woo proved that $G_{n_{n}}\left(X, i_{1}, X \times Y\right) \cong G_{n}(X) \oplus \pi_{n}(Y)$. Their notation differs from ours. In particular, they denoted $G_{n}(A$, inclusion, X) by $G_{n}(X, A)$. From Remark $2.1(2)$, we can casily obtain their theorem as the following corollary.

Corollary 2.9. $G_{n}\left(X, i_{1}, X \times Y\right) \cong G_{n}(X) \oplus \pi_{n}(Y)$ and $G_{n}\left(Y, i_{2}, X \times\right.$ $Y) \cong \pi_{n}(X) \oplus G_{n}(Y)$.

A fibration $F \xrightarrow{i} E \xrightarrow{p} B$ is called homotopically trivial if there exist homotopy equivalences $h: E \rightarrow B \times F$ and $h_{\mid F}: F^{\prime} \rightarrow F$ such the diagram

is homotopy commutative. From Proposition 2.4(1), (2) and Corollary 2.9, we can obtain more powerful result.

Proposition 2.10. If $F \xrightarrow{i} E \xrightarrow{p} B$ is a homotopically trivial fibration, then $G_{n}(F, i, F) \cong \pi_{n}(B) \oplus G_{n}(F)$.

Referfances

1. D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91(1969), 729-756.
2. B. H. Gottlieb, Applications of bundle map theory(1), Trans. Amer. Math. Soc. 171(1972), 23-50.
3. I. G. Halbhavi and K. Varadarajan, Gottlieb sets and duality in homotopy thcory, Canad. J. Math.,27(5)(1975), 1042-1055.
4. P. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Publishers, Inc., 1965.
5. K. Y. Lec and M. H. Woo, Generalized evaluation subgroups of product space relative to a factor, Proc. Amer. Math. Soc. 124(7)(1996), 2255-2260.
6. G. Lupton and J. Oprea, Cohomologically symplectic spaces: Toral actions and the Gottlieb group, 'Trans. Amer. Math. Soc. 347(1)(1995), 261-288.
7. R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory: Harper \& Row, New York, 1968.
8. E. H. Spanier, Algebraic Topology, McGraw-Itill, New York, 1966.
9. M. H. Woo and J. R. Kim, Certain subgroups of homotopy groups, J. Korcan Math. Soc., 21(2)(1984), 109-120.
10. Y. S. Yoon, Lifting Gottlieb sets and duality, Proc. Amer. Math. Soc. $119(4)(1993), 1315-1321$.
11. Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl.109(2001),173-181.

Department of Mathematics
Hannam University
Taejon 306-791, Korea
E-mail: yoon@math.hannam.ac.kr

[^0]: Supported by Hannam University fund during 2000-2001.
 Received by the editors on April 23, 2001.
 2000 Mathematics Subject Classifications: 55R05, 55N45, 57 P 10.
 Key words and phrases: the generalized Gottlieb set, fibration.

