FREE CYCLIC ACTIONS OF THE 3-DIMENSIONAL NILMANIFOLD

Joonkook Shin*, Daehwan Goo** and Eunmi Park***

Abstract

. we shall deal with ten cases out of 15 distinct almost Bieberbach groups up to Seifert local invariant. In those cases we will show that if G is a finite abelian group acting freely on the standard nilmanifold, then G is cyclic, up to topological conjugacy.

1. Introduction

It is well known that all 3-dimensional infra-nilmanifolds are Seifert manifolds. A classification of the 3 -dimensional Seifert manifolds with solvable fundamental group (amongst them infra-nilmanifolds) is found in Orlik's book ([6, Theorem 1, p.142]).

The general question of classifying finite group actions on a closed 3 -manifold is very hard. For example, it is not known if every finite action on S^{3} is conjugate to a linear action. However, the actions on a 3 -dimensional torus can be understood easily $([4,5])$.

Recently it is known that there are only 15 kinds of distinct closed 3-dimensional manifolds M with a Nil-geometry up to Seifert local invariant ([1]). We shall study only free actions of finite abelian groups G on the 3-dimensional nilmanifold, up to topological conjugacy. By the works of Bieberbach and Waldhausen($[2,3,10]$), this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.

[^0]In this paper we shall deal with ten cases out of 15 distinct almost Bieberbach groups up to Seifert local invariant. In those cases we will show that if G is a finite abelian group acting freely on the standard nilmanifold, then G is cyclic, up to topological conjugacy. All the necessary ideas and techniques for finding and classifying all possible finite abelian group actions on the 3-dimensional nilmanifold can be found in [9]. The problem will be reduced to a purely group-theoretic one.

Note that Nil denotes the 3 -dimensional Heisenberg group; i.e. Nil consists of all 3×3 real upper triangular matrices with diagonal entries 1 , which is connected, simply connected and two-step nilpotent. Hence Nil has the structure of a line bundle over \mathbb{R}^{2}. We take a left invariant metric coming from the orthonormal basis

$$
\left\{\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right\}
$$

for the Lie algebra of Nil. This is, what is called, the Nil-geometry and its isometry group is $\operatorname{Isom}(\mathrm{Nil})=\mathrm{Nil} \rtimes O(2)([7,8])$. All isometries of Nil preserve orientation and the bundle structure.

Throughout this paper, we shall denote the Heisenberg group Nil simply by \mathcal{H}. All terminologies and notations are followed by those in [8].

2. Free cyclic actions of the $\mathbf{3}$-dimensional nilmanifold

We shall study free actions of finite abelian groups G on the standard nilmanifold \mathcal{N} which yield an infra-nilmanifold homeomorphic to \mathcal{H} / Γ. First we shall deal with the seifert bundle type 3 case out of 15 distinct almost Bieberbach groups up to Seifert local invariant([1, Proposition 6.1]).

Let us denote Γ imbedded in $\operatorname{Aff}(\mathcal{H})$ by
$\Gamma=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{3 k}, \alpha^{3}=t_{3}, \alpha t_{2} \alpha^{-1}=t_{1}, \alpha t_{1} \alpha^{-1}=$ $\left.t_{2}^{-1} t_{1}^{-1}\right\rangle$, where $t_{1}=\left(e_{1}, I\right), t_{2}=\left(e_{2}, I\right), t_{3}^{3 k}=\left(e_{3}, I\right)$, and

$$
\alpha=\left(\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{9 k}+\frac{1}{24} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 1 \\
-1 & 0
\end{array}\right]\right) .
$$

Here I is the identity matrix in $\operatorname{Aut}(\mathcal{H})=\mathbb{R}^{2} \rtimes \mathrm{GL}(2, \mathbb{R})$. Note that $[\Gamma, \Gamma]=\left\langle t_{1} t_{2}^{-1}, t_{2}^{3}, t_{3}^{3 k}\right\rangle$.

Theorem 1. There exists only one cyclic group $\mathbb{Z}_{9 k}$ acting freely, up to topological conjugacy, on \mathcal{N} which yields an orbit manifold homeomorphic to \mathcal{H} / Γ. The action of $\Gamma / N=\mathbb{Z}_{9 k}$, where $N=$ $\left\langle t_{1}, t_{2}, \alpha^{9 k}\right\rangle$, on the nilmanifold \mathcal{H} / N is given by $\langle f\rangle$:

$$
f(x, y, z)=\left(-x+y+\frac{1}{2},-x, z+\frac{1}{2} x^{2}-x y-\frac{1}{2} x+\frac{1}{9 k}+\frac{1}{24}\right) .
$$

Proof. Let N be a normal nilpotent subgroup of Γ such that $G=$ Γ / N is abelian. Then

$$
[\Gamma, \Gamma]=\left\langle t_{1} t_{2}^{-1}, t_{2}^{3}, t_{3}^{3 k}\right\rangle \subset N \subset\left\langle t_{1}, t_{2}, t_{3}\right\rangle .
$$

Suppose N contains both $t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}, t_{2} t_{3}^{r}$. Then N can be represented by an ordered set of generators

$$
\left\langle t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}, t_{2} t_{3}^{r}, t_{3}^{n}\right\rangle
$$

The details can be found in [9]. By the right action of $\left(\begin{array}{cc}1 & 0 \\ -\ell_{1} & 1\end{array}\right) \in$ $\operatorname{GL}(2, \mathbb{Z}) \subset \operatorname{Aut}(\mathcal{H})$ on N, N reduces to $\left\langle t_{1} t_{3}^{\ell}, t_{2} t_{3}^{r}, t_{3}^{n}\right\rangle$. Since N contains t_{2}^{3} and $t_{1} t_{2}^{-1}$, we have $t_{3}^{\ell-r}, t_{3}^{3 r} \in N$. Thus $\ell-r$ and $3 r$ must be multiples of n.

Note that $0 \leq \ell, r<n$. Thus $\ell=r$ and $\ell=0, \frac{n}{3}, \frac{2 n}{3}$. Since

$$
\left[t_{1} t_{3}^{\ell}, t_{2} t_{3}^{r}\right]=\left[t_{1}, t_{2}\right]=t_{3}^{3 k} \in N,
$$

$3 k$ must be a multiple of n. Note that we shall do only an infranilmanifold M_{1} case, i.e., $n=3 k$. Therefore the possible normal nilpotent subgroups are

$$
N_{1}=\left\langle t_{1}, t_{2}, t_{3}^{3 k}\right\rangle, N_{2}=\left\langle t_{1} t_{3}^{k}, t_{2} t_{3}^{k}, t_{3}^{3 k}\right\rangle, N_{3}=\left\langle t_{1} t_{3}^{2 k}, t_{2} t_{3}^{2 k}, t_{3}^{3 k}\right\rangle
$$

It is not hard to see $N_{1} \underset{R}{\sim} N_{2}$ and $N_{3} \underset{R}{\sim} N_{4}$ by using $\left[\begin{array}{ccc}1 & \frac{1}{3} & * \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 1\end{array}\right]$, and $N_{1} \underset{R}{\sim} N_{3}$ by using $\left[\begin{array}{ccc}1 & \frac{2}{3} & * \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1\end{array}\right]$. Thus we get

$$
N=N_{1}=\left\langle t_{1}, t_{2}, t_{3}^{3 k}\right\rangle=\left\langle t_{1}, t_{2}, \alpha^{9 k}\right\rangle .
$$

Therefore there exists only one $\mathbb{Z}_{9 k}=\Gamma / N$ free action on the nilmanifold \mathcal{H} / N which yields an infra-nilmanifold homeomorphic to \mathcal{H} / Γ.

Suppose N does not contain either $t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}$ or $t_{2} t_{3}^{r}$. Since G is not abelian in these cases, we induce a contradiction.

The realization of the action of $G \cong \Gamma / N$ on the nilmanifold \mathcal{H} / N, as an affine action on the standard nilmanifold, is easy provided in the "Realization" procedure in [12].

Let $N=\left\langle t_{1}, t_{2}, \alpha^{9 k}\right\rangle$. Since G is generated by the images of α, it is enough to calculate conjugations of α by (I, B), where $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in$ $\operatorname{Aut}(\mathcal{H})$.
For $\alpha=(a, A)=\left(\left[\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{9 k}+\frac{1}{24} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right]\right)$, we have

$$
(I, B)(a, A)(I, B)^{-1}=(B(a), A)=\left(\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{9 k}+\frac{1}{24} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A\right) .
$$

It acts on \mathcal{H} by

$$
\begin{aligned}
& \left(\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{9 k}+\frac{1}{24} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A\right) \cdot\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & -x+y+\frac{1}{2} & z+\frac{1}{2} x^{2}-x y+\frac{1}{9 k}+\frac{1}{24}-\frac{x}{2} \\
0 & 1 & -x \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore if $f: \mathcal{H} \rightarrow \mathcal{H}$ is the map generated by α, then

$$
f(x, y, z)=\left(-x+y+\frac{1}{2},-x, z+\frac{1}{2} x^{2}-x y+\frac{1}{9 k}+\frac{1}{24}-\frac{x}{2}\right)
$$

THEOREM 2. Suppose G is a finite abelian group acting freely on the standard nilmanifold. Then G is cyclic, up to topological conjugacy, and it is one of the following. The action of $G=\Gamma_{i} / N_{i}$ on the nilmanifold \mathcal{H} / N_{i} is given by $\left\langle f_{i}\right\rangle(i=1, \ldots, 9)$:
Γ
G
Γ_{1}
$\mathbb{Z}_{16 k}$

$$
N_{1}=\left\langle t_{1}, t_{2}, t_{3}^{4 k}\right\rangle
$$

$\Gamma_{2}: \quad \mathbb{Z}_{16 k}$

$$
N_{2}=\left\langle t_{1}, t_{2}, t_{3}^{4 k}\right\rangle
$$

Γ_{3}
$\mathbb{Z}_{9 k}$
$N_{3}=\left\langle t_{1}, t_{2}, t_{3}^{3 k}\right\rangle$
$\Gamma_{4}:$
$\mathbb{Z}_{9 k-3}$
$N_{4}=\left\langle t_{1}, t_{2}, t_{3}^{3 k-1}\right\rangle$
$\Gamma_{5}:$
$\mathbb{Z}_{9 k-6}$
$N_{5}=\left\langle t_{1}, t_{2}, t_{3}^{3 k-2}\right\rangle$
$\Gamma_{6}:$
$\mathbb{Z}_{36 k}$
$N_{6}=\left\langle t_{1}, t_{2}, t_{3}^{6 k}\right\rangle$
$\Gamma_{7}:$
$\mathbb{Z}_{36 k}$
$N_{7}=\left\langle t_{1}, t_{2}, t_{3}^{6 k}\right\rangle$
$\Gamma_{8}:$
$\mathbb{Z}_{36 k+2}$
$N_{8}=\left\langle t_{1}, t_{2}, t_{3}^{6 k+2}\right\rangle$
$\Gamma_{9}:$
$\mathbb{Z}_{36 k+24}$
$N_{9}=\left\langle t_{1}, t_{2}, t_{3}^{6 k+4}\right\rangle$

$$
\begin{aligned}
& \Gamma_{1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{4 k},\left[t_{3}, t_{2}\right]=\left[t_{3}, t_{1}\right]=1, \alpha^{4}=t_{3}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1}, \alpha t_{2} \alpha^{-1}=t_{1},\left[\alpha, t_{3}\right]=1\right\rangle \\
& \Gamma_{2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{4 k},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1, \alpha^{4}=t_{3}^{3}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1}, \alpha t_{2} \alpha^{-1}=t_{1},\left[\alpha, t_{3}\right]=1\right\rangle \\
& \Gamma_{3}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{3 k}, \alpha^{3}=t_{3}^{2}, v \alpha t_{2} \alpha^{-1}=t_{1}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1} t_{1}^{-1}\right\rangle \\
& \Gamma_{4}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{3 k-1}, \alpha^{3}=t_{3}, \alpha t_{2} \alpha^{-1}=t_{1}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1} t_{1}^{-1}\right\rangle \\
& \Gamma_{5}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{3 k-2}, \alpha^{3}=t_{3}^{2}, \quad \alpha t_{2} \alpha^{-1}=t_{1}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1} t_{1}^{-1}\right\rangle \\
& \Gamma_{6}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{6 k}, \quad \alpha t_{2} \alpha^{-1}=t_{2} t_{1}, \alpha t_{1} \alpha^{-1}=t_{2}^{-1}, \\
& \left.\alpha^{6}=t_{3}\right\rangle \\
& \Gamma_{7}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{6 k}, \quad \alpha t_{2} \alpha^{-1}=t_{2} t_{1}, \alpha t_{1} \alpha^{-1}=t_{2}^{-1}, \\
& \left.\alpha^{6}=t_{3}^{5}\right\rangle \\
& \Gamma_{8}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{6 k+2}, \quad \alpha t_{2} \alpha^{-1}=t_{2} t_{1}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1}, \quad \alpha^{6}=t_{3}^{5}\right\rangle \\
& \Gamma_{9}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{1}, t_{2}\right]=t_{3}^{6 k+4}, \quad \alpha t_{2} \alpha^{-1}=t_{2} t_{1}, \\
& \left.\alpha t_{1} \alpha^{-1}=t_{2}^{-1}, \quad \alpha^{6}=t_{3}\right\rangle \\
& f_{1}(x, y, z)=\left(y,-x, z-x y+\frac{1}{16 k}\right) . \\
& f_{2}(x, y, z)=\left(-y, x, z-x y+\frac{1}{16 k}\right) \text {. } \\
& f_{3}(x, y, z)=\left(-y, x-y-\frac{1}{2}, \frac{1}{9 k}-\frac{1}{24}+z+\frac{1}{2} y^{2}-x y\right) \text {. } \\
& f_{4}(x, y, z)=\left(-x+y+\frac{1}{2},-x, z+\frac{1}{2} x^{2}-x y+\frac{1}{9 k-3}+\frac{1}{24}-\frac{x}{2}\right) \text {. } \\
& f_{5}(x, y, z)=\left(-y, x-y-\frac{1}{2}, z+\frac{1}{2} y^{2}-x y+\frac{1}{9 k-6}-\frac{1}{24}\right) \text {. } \\
& f_{6}(x, y, z)=\left(y,-x+y+\frac{1}{2}, z+\frac{1}{2} y^{2}-x y+\frac{1}{36 k}+\frac{1}{8}\right) \text {. } \\
& f_{7}(x, y, z)=\left(x-y+\frac{1}{2}, x, z+\frac{1}{2} x^{2}-x y+\frac{1}{36 k}-\frac{1}{8}\right) \text {. } \\
& f_{8}(x, y, z)=\left(x-y+\frac{1}{2}, x, z+\frac{1}{2} x^{2}-x y+\frac{1}{36 k}-\frac{1}{8}\right) \text {. } \\
& f_{9}(x, y, z)=\left(y,-x+y+\frac{1}{2}, z+\frac{1}{2} y^{2}-x y+\frac{1}{36 k}+\frac{1}{8}\right) \text {. }
\end{aligned}
$$

Proof. We shall deal with only Γ_{1}. Let N be a normal nilpotent subgroup of Γ_{1} such that $G=\Gamma_{1} / N$ is abelian. Then

$$
\left[\Gamma_{1}, \Gamma_{1}\right]=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4 k}\right\rangle \subset N \subset \Gamma_{1} .
$$

Suppose N contains both $t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}, t_{2} t_{3}^{m}$. Then N can be represented by an ordered set of generators

$$
\left\langle t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}, t_{2} t_{3}^{m}, t_{3}^{n}\right\rangle
$$

Then N reduces to $\left\langle t_{1} t_{3}^{\ell}, t_{2} t_{3}^{m}, t_{3}^{n}\right\rangle$. Since N contains $t_{1} t_{2}$ and t_{2}^{2}, we have $t_{3}^{2 m}, t_{3}^{\ell+m} \in N$. Thus $2 m$ and $\ell+m$ must be multiples of n.

Note that $0 \leq \ell, m<n$. Thus $\ell=0, \frac{n}{2}$ and $m=0, \frac{n}{2}$. Since

$$
\left[t_{1} t_{3}^{\ell}, t_{2} t_{3}^{m}\right]=\left[t_{1}, t_{2}\right]=t_{3}^{4 k} \in N
$$

$4 k$ must be a multiple of n. Note that we shall do only an infranilmanifold M_{1} case, i.e., $n=4 k$. Suppose N does not contain either $t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}$ or $t_{2} t_{3}^{m}$. Since G is not abelian in these cases, we induce a contradiction. So, the possible normal nilpotent subgroups are

$$
N_{1}=\left\langle t_{1}, t_{2}, t_{3}^{4 k}\right\rangle, \quad N_{2}=\left\langle t_{1} t_{3}^{2 k}, t_{2} t_{3}^{2 k}, t_{3}^{4 k}\right\rangle
$$

It is not hard to see $N_{1} \underset{R}{\sim} N_{2}$ by using $\left[\begin{array}{ccc}1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1\end{array}\right]$. Thus we get

$$
N=N_{1}=\left\langle t_{1}, t_{2}, t_{3}^{4 k}\right\rangle
$$

Therefore there exists only one $\mathbb{Z}_{16 k}=\Gamma_{1} / N$ free action on the nilmanifold \mathcal{H} / N which yields an infra-nilmanifold homeomorphic to \mathcal{H} / Γ_{1}.

Suppose N does not contain either $t_{1} t_{2}^{\ell_{1}} t_{3}^{\ell_{2}}$ or $t_{2} t_{3}^{m}$. Since G is not abelian in these cases, we induce a contradiction.

Let $N=\left\langle t_{1}, t_{2}, \alpha^{16 k}\right\rangle$. Since G is generated by the images of α, it is enough to calculate conjugations of α by (I, B), where $B=$ $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right) \in \operatorname{Aut}(\mathcal{H})$.

For $\alpha=(a, A)=\left(\left[\begin{array}{ccc}1 & 0 & \frac{1}{16 k} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right)$, we have

$$
(I, B)(a, A)(I, B)^{-1}=(B(a), A)=\left(\left[\begin{array}{ccc}
1 & 0 & \frac{1}{16 k} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A\right)
$$

It acts on \mathcal{H} by

$$
\left(\left[\begin{array}{ccc}
1 & 0 & \frac{1}{16 k} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A\right) \cdot\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & y & z-x y+\frac{1}{16 k} \\
0 & 1 & -x \\
0 & 0 & 1
\end{array}\right]
$$

Therefore if $f: \mathcal{H} \rightarrow \mathcal{H}$ is the map generated by α, then

$$
f(x, y, z)=\left(y,-x, z-x y+\frac{1}{16 k}\right)
$$

The other cases can be done by using a similar method.

References

1. K. Dekimpe, P. Igodt, S. Kim and K.B. Lee, Affine structures for closed 3-dimensional manifolds with nil-geometry, Quart. J. Math. Oxford (2) 46 (1995), 141-167.
2. W. Heil, On P^{2}-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775.
3. W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217-223.
4. J. Hempel, Free cyclic actions of $S^{1} \times S^{1} \times S^{1}$, Proc. A.M.S. 48, 1 (1975), 221-227.
5. K.B. Lee, J.K. Shin and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Top. its Appl. 53 (1993), 153-175.
6. P. Orlik, Seifert Manifolds, Springer Lecture Notes in Math. 291, 1972.
7. P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), 401-489.
8. J.K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups, Geom. Dedicata 65 (1997), 267-290.
9. J.K. Shin and J. Kim, A cyclic group action on the nilmanifold, J. Chung -cheong Math. Soc. 13(2) (2000), 71-79.
10. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 no. 2 (1968), 56-88.
11. J. Wolf, Spaces of Constant Curvatures, Publish or Perish, 1974.

*

Joonkook Shin
Department of Mathematics
Chungnam National University
TaEjon 305-764, Korea
E-mail: jkshin@math.cnu.ac.kr

Daehwan Goo
Department of Mathematics
Chungnam National University
TaEjon 305-764, Korea
E-mail: pi3014@math.cnu.ac.kr

Eunmi Park
Department of Mathematics
Chungnam National University
TAEJON 305-764, Korea
E-mail: piettywoman07@hanmail.cnu.ac.kr

[^0]: supported by Grant No. R01-2000-00005 from the Korea Science \& Engineering Foundation.

 Received by the editors on December 10, 2001.
 2000 Mathematics Subject Classifications: Primary 57S25, Secondary 57S17.
 Key words and phrases: group actions, Bieberbach groups, Affine conjugacy.

