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STABILITY OF SOME GENERALIZED 
QUADRATIC FUNCTIONAL EQUATION

Sang Han Lee

ABSTRACT. In this paper we prove the stability of some generaliged 
quadratic functional equation

a2f (흐느의)+ “2/ (흐三으) = 幻位)+ 2f(y)-

In 1940, S. M. Ulam ([9]) posed the following question on the sta­
bility of homomorphisms: Given a metric group (G, +, d), a number 
e > 0 and a mapping f : G — G which satisfies the inequality

거(/(⑦+ 이), /(⑦) 十 /(?/)) < 三

for all x,y E G, does there exist an automorphism a \ G —斗 G and a 
constant fc > 0, depending only on G, such that for all a: E (7

d(f(⑦), a(x)) < fee?

This question became a source of the stability theory in the Hyers- 
Ulam sense.

The case of approximately additive mappings was solved by D. H. 
Hyers ([1]) under the assumption that X and Y are Banach spaces. 
Later, many authors proved numerous theorems for the stability of 
functional equations.
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The quadratic function /(⑦) = ⑦2 is a solution of the functional 
equation f (x + y) + f (x — y) = 2/(a?) + 2/(이). So, every solution of 
the functional equation f(x + ?/) + f(x — y) = 2f(x) + 2f(y) is said 
to be a quadratic function. In this paper we deal with a generalized 
quadratic functional equation a2f (으흐이) “Hz2/ (으고) — 2/(鉛)+2/(이), 

where a is a nonzero real constant.
Let R+ denote the set of nonnegative real numbers. Recall that a 

function H : R十 x R十 一> R_|_ is homogeneous of degree p > 0 if it 
satisfies H($u,tv) = tpH(u^ v) for all nonnegative real numbers t,u 
and v. Throughout this paper X and Y will be a real normed linear 
space and a real Banach space, respectively. We may assume that H 
is homogeneous of degree p. Given a function / : X —> V, we set

Df(x,y) := a2f (으—의) 十 a2/ (으으) 그 2/(^)- 2/(切 

for all x,ye X.

Theorem 1. Let d > Q and 0 < p < 2 be real numbers. If a 
function f : X -今 Y satisfies

(1) hZVCr，유)|| 引+ 互(||끼，||O

for all x,y e X and /(0) = 0, then there exists a unique quadratic 
function Q : X Y such that

1 1
⑵ \\f^-Q(x)\\<-6+——h(xy

z 아 —

for all x e X, where h(x) = |/f(||2씨|,0) + Jf(||씨|, ||끼|).

Proof. Putting 沙 = 0 in (1) and replacing x by 2x in this result, 
we have

(3) 서'으 *지" 으 ,(=(l|2:이|,0))
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for all x e X. Putting y = x in (1) we have

(4) a2/(그)—4/( 찌 ☆ + H(||<||z||)

for all x E X. By (3) and (4), we have

(5) ||/(2⑦) 一 4/(⑦)|| < -5 + h(x)

for all x e X, where h(x) = |H(||2끼|,0) + H(||씨|, ||씨|). By (5) we 
have

(6) ||/(찌-淳||冬|5 + }")

for all x e X. Using (6) we have

(7) lie리||=붸/(2=-d

Q 1
으 ;4""5 十 조2"(흐-2)/心)

for all :r € X and all positive integers n. From (6) and (7) we have

(8) 뽀〉_쏘쯰
k=m k=m

for all ⑦ € X and all nonnegative integers m and n with m < n. 
This shows that | 사의 j is a Cauchy sequence for all x E X. Con­

sequently, we can define a function Q : X —> K by 

(") = lim 八째)
n—>oo 4n

for all x & X. We have Q(0) = 0 and

\\DQ(x,y)\\= lim 4-"||刀/(2牧,2物)||n—>oo
江 lim(4-"5 + 2(…)"五(||씨|>||)) 

n—ko
= o
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for all x^y E X. Hence

(9) a2Q (끄으) + a2(北三으) = 2(")十 2W)

for all x,y e X. Putting y = 0 in (9) we have

(10) a2Qg)=(")

for all x e X. Using (9) and (10) we have

-H/) + Q(x — y) = 2Q(x) + 2Q(y)

for all x,y E X. It follows that Q is quadratic. Putting m = 0 in (8) 
and letting n —> oo we have (2). Now, let Q' : X —今 F be another 
quadratic function satisfying (2). Then we have

||Q(z) — Qf{x)\\ = 4-"||Q(2G) — Q'(2"z)||

드 4-"(||Q(2":r) —/(『r)|| 十 ||Q'(2":r) —/(2"7이|)

2
으 4""5 十 J三^2피""2旧(찌

for all a? G X and all positive integers n. Since

lim f4"n5+〒-丄-2"(…)=0, 
n_oo \ 4 _ 2흐 v

we can conclude that Q{x) = Q'{x) for all x E X. □ □

Theorem 2. Let 2 < p be a real number. If a function f : X Y 
satisfies

(11) ||P/(—)|K*| 끼 |>||)
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for all x,y e X and /(0) = 0, then there exists a unique quadratic 
function Q : X Y such that

(12) I") —W)l匕 J"
z片 아

for all x e X, where h(x) = |lf(||2씨|,0) + 2T(||찌|, ||씨|).

Proof. As in the proof of Theorem 1, we see that

(13) ||/(幼)—4/(찌||引心)

for all x e where h(x) = |/f(||2:z:||,0) + 2f(||끼|, ||끼|). Replacing 
⑦ by 으 in (13) we have

(14) ||4/(2-切) —/(z)|| 玄 2-=z)

for all x e X, Using (14) we have

(15) ||4"/(2-n⑦) 一 4"+7(2"(n+1)z)|| < 2”p2히2-끼九(⑦)

for all x e X, From (14) and (15) we have

n—1
||4"/(2-"z) —/(z)|| <£2-W(2-H(z)

k=0

for all ⑦ € X and all positive integers n. The rest of the proof is 
similar to the corresponding part of the case p < 2. □ □

Theorem 3. Assume that 5 > 07 p G (0,00) \ {2}, and 6 + ||(a2 — 
2)/(0) 11 = 0 when 2 < p. If a function f : X Y satisfies (1) for all 
x,y e X, then there exists a unique quadratic function Q : X Y 
such that

(16) 11/00 — /(o) — <2(찌|| 드 + II(q2 — 2)f(o)|| + |4三■히(찌
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for all x e X7 where h(x) = |/f(||2끼|, 0) + K(||찌|, ||씨|).

Proof. Let F(x) = f(x) — /(0). Then _F(0) = 0 and

|\DF^ = \ \Df^ y) - 2(a2 - 2)/(0) 11

☆ + 2||(a2-2)/(0)||+W|| 끼 |,||O

for all x,y E X. Applying Theorem 1 and Theorem 2, we can show 
that there exists a unique quadratic function Q : X Y satisfying 
(16). □ □

Define a function H : R十 xR十 一> R十 by H{a, b) = (ap + bp)O where 
0 > 0 and p € (0, oo). Then H is homogeneous of degree p. Thus we 
have the following corollary.

Corollary 4. Assume that 5 > 07 p e (0, oc)\{2}, and 5+||(a2 — 
2)/(0) 11 = 0 when 2 < p. If a function f : X Y satisfies

lirWWII ☆十0(lhT + ||<)

for all x,y E X, then there exists a unique quadratic function Q : 
X -^Y such that

1 2 -노 2 호ILf(rr) — /(0) - Q(^)|| < 히 + ||(a2 — 2)/(0)|| + 心可이

for all x e X.
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