STABILITY OF SOME GENERALIZED QUADRATIC FUNCTIONAL EQUATION

Sang Han Lee

Abstract. In this paper we prove the stability of some generaliged quadratic functional equation

$$
a^{2} f\left(\frac{x+y}{a}\right)+a^{2} f\left(\frac{x-y}{a}\right)=2 f(x)+2 f(y)
$$

In 1940, S. M. Ulam ([9]) posed the following question on the stability of homomorphisms: Given a metric group ($G,+, d$), a number $\epsilon>0$ and a mapping $f: G \rightarrow G$ which satisfies the inequality

$$
d(f(x+y), f(x)+f(y))<\epsilon
$$

for all $x, y \in G$, does there exist an automorphism $a: G \rightarrow G$ and a constant $k>0$, depending only on G, such that for all $x \in G$

$$
d(f(x), a(x))<k \epsilon ?
$$

This question became a source of the stability theory in the HyersUlam sense.

The case of approximately additive mappings was solved by D. H. Hyers ([1]) under the assumption that X and Y are Banach spaces. Later, many authors proved numerous theorems for the stability of functional equations.

[^0]The quadratic function $f(x)=x^{2}$ is a solution of the functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$. So, every solution of the functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ is said to be a quadratic function. In this paper we deal with a generalized quadratic functional equation $a^{2} f\left(\frac{x+y}{a}\right)+a^{2} f\left(\frac{x-y}{a}\right)=2 f(x)+2 f(y)$, where a is a nonzero real constant.

Let \mathbb{R}_{+}denote the set of nonnegative real numbers. Recall that a function $H: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is homogeneous of degree $p>0$ if it satisfies $H(t u, t v)=t^{p} H(u, v)$ for all nonnegative real numbers t, u and v. Throughout this paper X and Y will be a real normed linear space and a real Banach space, respectively. We may assume that H is homogeneous of degree p. Given a function $f: X \rightarrow Y$, we set

$$
D f(x, y):=a^{2} f\left(\frac{x+y}{a}\right)+a^{2} f\left(\frac{x-y}{a}\right)-2 f(x)-2 f(y)
$$

for all $x, y \in X$.
Theorem 1. Let $\delta \geq 0$ and $0<p<2$ be real numbers. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq \delta+H(\|x\|,\|y\|) \tag{1}
\end{equation*}
$$

for all $x, y \in X$ and $f(0)=0$, then there exists a unique quadratic function $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{2} \delta+\frac{1}{4-2^{p}} h(x) \tag{2}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{2} H(\|2 x\|, 0)+H(\|x\|,\|x\|)$.
Proof. Putting $y=0$ in (1) and replacing x by $2 x$ in this result, we have

$$
\begin{equation*}
\left\|a^{2} f\left(\frac{2 x}{a}\right)-f(2 x)\right\| \leq \frac{1}{2}(\delta+H(\|2 x\|, 0)) \tag{3}
\end{equation*}
$$

for all $x \in X$. Putting $y=x$ in (1) we have

$$
\begin{equation*}
\left\|a^{2} f\left(\frac{2 x}{a}\right)-4 f(x)\right\| \leq \delta+H(\|x\|,\|x\|) \tag{4}
\end{equation*}
$$

for all $x \in X$. By (3) and (4), we have

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq \frac{3}{2} \delta+h(x) \tag{5}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{2} H(\|2 x\|, 0)+H(\|x\|,\|x\|)$. By (5) we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{3}{8} \delta+\frac{1}{4} h(x) \tag{6}
\end{equation*}
$$

for all $x \in X$. Using (6) we have

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n+1} x\right)}{4^{n+1}}\right\| & =\frac{1}{4^{n}}\left\|f\left(2^{n} x\right)-\frac{f\left(2 \cdot 2^{n} x\right)}{4}\right\| \tag{7}\\
& \leq \frac{3}{8} 4^{-n} \delta+\frac{1}{4} 2^{n(p-2)} h(x)
\end{align*}
$$

for all $x \in X$ and all positive integers n. From (6) and (7) we have

$$
\begin{equation*}
\left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \leq \sum_{k=m}^{n-1} \frac{3}{8} 4^{-k} \delta+\sum_{k=m}^{n-1} \frac{1}{4} 2^{k(p-2)} h(x) \tag{8}
\end{equation*}
$$

for all $x \in X$ and all nonnegative integers m and n with $m<n$. This shows that $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence for all $x \in X$. Consequently, we can define a function $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}
$$

for all $x \in X$. We have $Q(0)=0$ and

$$
\begin{aligned}
\|D Q(x, y)\| & =\lim _{n \rightarrow \infty} 4^{-n}\left\|D f\left(2^{n} x, 2^{n} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left(4^{-n} \delta+2^{(p-2) n} H(\|x\|,\|y\|)\right) \\
& =0
\end{aligned}
$$

for all $x, y \in X$. Hence

$$
\begin{equation*}
a^{2} Q\left(\frac{x+y}{a}\right)+a^{2} Q\left(\frac{x-y}{a}\right)=2 Q(x)+2 Q(y) \tag{9}
\end{equation*}
$$

for all $x, y \in X$. Putting $y=0$ in (9) we have

$$
\begin{equation*}
a^{2} Q\left(\frac{x}{a}\right)=Q(x) \tag{10}
\end{equation*}
$$

for all $x \in X$. Using (9) and (10) we have

$$
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)
$$

for all $x, y \in X$. It follows that Q is quadratic. Putting $m=0$ in (8) and letting $n \rightarrow \infty$ we have (2). Now, let $Q^{\prime}: X \rightarrow Y$ be another quadratic function satisfying (2). Then we have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =4^{-n}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right)\right\| \\
& \leq 4^{-n}\left(\left\|Q\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|Q^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \leq 4^{-n} \delta+\frac{2}{4-2^{p}} 2^{n(p-2)} h(x)
\end{aligned}
$$

for all $x \in X$ and all positive integers n. Since

$$
\lim _{n \rightarrow \infty}\left(4^{-n} \delta+\frac{2}{4-2^{p}} 2^{n(p-2)} h(x)\right)=0
$$

we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$.

Theorem 2. Let $2<p$ be a real number. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq H(\|x\|,\|y\|) \tag{11}
\end{equation*}
$$

for all $x, y \in X$ and $f(0)=0$, then there exists a unique quadratic function $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{2^{p}-4} h(x) \tag{12}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{2} H(\|2 x\|, 0)+H(\|x\|,\|x\|)$.

Proof. As in the proof of Theorem 1, we see that

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq h(x) \tag{13}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{2} H(\|2 x\|, 0)+H(\|x\|,\|x\|)$. Replacing x by $\frac{x}{2}$ in (13) we have

$$
\begin{equation*}
\left\|4 f\left(2^{-1} x\right)-f(x)\right\| \leq 2^{-p} h(x) \tag{14}
\end{equation*}
$$

for all $x \in X$. Using (14) we have

$$
\begin{equation*}
\left\|4^{n} f\left(2^{-n} x\right)-4^{n+1} f\left(2^{-(n+1)} x\right)\right\| \leq 2^{-p} 2^{n(2-p)} h(x) \tag{15}
\end{equation*}
$$

for all $x \in X$. From (14) and (15) we have

$$
\left\|4^{n} f\left(2^{-n} x\right)-f(x)\right\| \leq \sum_{k=0}^{n-1} 2^{-p} 2^{k(2-p)} h(x)
$$

for all $x \in X$ and all positive integers n. The rest of the proof is similar to the corresponding part of the case $p<2$.

Theorem 3. Assume that $\delta \geq 0, p \in(0, \infty) \backslash\{2\}$, and $\delta+\|\left(a^{2}-\right.$ 2) $f(0) \|=0$ when $2<p$. If a function $f: X \rightarrow Y$ satisfies (1) for all $x, y \in X$, then there exists a unique quadratic function $Q: X \rightarrow Y$ such that
(16) $\quad\|f(x)-f(0)-Q(x)\| \leq \frac{1}{2} \delta+\left\|\left(a^{2}-2\right) f(0)\right\|+\frac{1}{\left|4-2^{p}\right|} h(x)$
for all $x \in X$, where $h(x)=\frac{1}{2} H(\|2 x\|, 0)+H(\|x\|,\|x\|)$.

Proof. Let $F(x)=f(x)-f(0)$. Then $F(0)=0$ and

$$
\begin{aligned}
\|D F(x, y)\| & =\left\|D f(x, y)-2\left(a^{2}-2\right) f(0)\right\| \\
& \leq \delta+2\left\|\left(a^{2}-2\right) f(0)\right\|+H(\|x\|,\|y\|)
\end{aligned}
$$

for all $x, y \in X$. Applying Theorem 1 and Theorem 2, we can show that there exists a unique quadratic function $Q: X \rightarrow Y$ satisfying (16).

Define a function $H: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by $H(a, b)=\left(a^{p}+b^{p}\right) \theta$ where $\theta \geq 0$ and $p \in(0, \infty)$. Then H is homogeneous of degree p. Thus we have the following corollary.

Corollary 4. Assume that $\delta \geq 0, p \in(0, \infty) \backslash\{2\}$, and $\delta+\|\left(a^{2}-\right.$ 2) $f(0) \|=0$ when $2<p$. If a function $f: X \rightarrow Y$ satisfies

$$
\|D f(x, y)\| \leq \delta+\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$, then there exists a unique quadratic function Q : $X \rightarrow Y$ such that

$$
\|f(x)-f(0)-Q(x)\| \leq \frac{1}{2} \delta+\left\|\left(a^{2}-2\right) f(0)\right\|+\frac{2+2^{p}}{\left|4-2^{p}\right|} \theta\|x\|^{p}
$$

for all $x \in X$.

References

1. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
2. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aeq. Math. 44 (1992), 125-153.
3. S. M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
4. , Quadratic functional equations of Pexider type, Internat. J. Math. \& Math. Sci. 24 (2000), 351-359.
5. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
6. J. C. Parnami and H. L. Vasudeva, On Jensen's functional equation, Aeq. Math. 43 (1992), 211-218.
7. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
8. T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, J. Math. Anal. Appl. 250 (2000), 579-588.
9. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.

Department of Cultural Studies
Chungbuk Provincial University of Science \& Technology
Okcheon 373-807, Korea
E-mail: shlee@ctech.ac.kr

[^0]: Received by the editors on November 26, 2001 .
 2000 Mathematics Subject Classifications: Primary 39B72.
 Key words and phrases: quadratic functional equation, stability.

