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Estimating Diameter and Height Growth for
Pinus densiflora S. et Z. Using Non-linear
Algebraic Difference Equations'*
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ABSTRACT

Pinus densiflora S. et Z. has widely been distributed, and is one of the important main foret resources
in Korea. Diameter and height growth patterns were estimated using non-linear algebraic difference equation,
which requires two-measurement times T, and T>. To maximize data use, all possible measurement interval
data were derived using Lag and Put statements in the SAS. In results, of the algebraic difference equations
applied, the Schumacher and the Gompertz polymorphic equations for diameter and height, respectively
showed the higher precision of the fitting. In order to allow more precise estimation of growth than those
of the basic Schumacher and the Gompertz, further refinement that combine biological realism as input into
the equation would be necessary.
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INTRODUCTION

Growth of the trees by age follows sigmoid-shaped
curves, and deriving growth function to presume
this growth pattern supplies efficient utilization of
forest resources and basis for forest management.
The clue to successful timber management is a
proper understanding of growth processes, and for
this various growth functions and models have been
used.

And satisfactory of growth models may depend
on the availability of high quality data. Growth
models have mostly been developed on the basis of
empirical data collected in trials of varying design.
The data from permanent sample plots have been
used commonly for the growth and yield modeling.
Because the long-term observation of plots provide
a very important database for developing growth
models. Another data from temporary plots can pro -
duce a faster solution not only in the circumstances
nothing has been known about forest development
and also high costs of maintenance are required for
‘the permanent sample plots. Especially temporary
plots are used very consciously for developing
growth models in situations where permanent sample
plots data are not available.

Suitable method utilizing the data from two
successive measurements is the algebraic difference
form of a growth function that has been used by
number of researchers (Clutter et al., 1983; Borders
et al., 1984; Lee, 1998, 2000). It usually starts with
the basic models which is the form of Y, = f (Y,
Ti, T2). Where the response variable Y, measured
at time T, is described as a function of the same
variable measured at initial time T, and a measure
of elapsed time as a function of T; and T,. The
Variable Y could be basal area, top height and
stems per hectare or any stand variables.

However, when there are few sample plot
remeasurements available for using the algebraic
difference equation, how one solves this problem?
These can be rearranged as all possible intervals

for each unit.

The objectives of this study, therefore, are
developing a method of sufficient projection form
data through the basic data, which are from stem
analysis, and to moﬁde basic information for
prediction of diameter and height growth in Pinus
densiflora Sieb. et Zucc. after fitting sigmoid-shaped
projection function to the projection data.

MATERIALS AND METHODS

Data for this study came from Pinus densiflora
Sieb. et Zucc. temporary plots grown in Beonsan
peninsular of Chonbuk province. All of 20 plots,
which were 20m X 20m size each plot, were used
for analysis. From the each plot 1 sample tree was
selected and cut, after cutting the sample trees
diameter and height were measured using stem
analysis.

Mean age, diameter and height were 35 years,
242 Cm and 16 m, respectively. The sample plots
were with the gradients of 15-25 degrees, and soil
type were moderately moist brown forest soil and
mostly loam and clay loam. A summary of relevant
plot statistics is given in Table 1.

Table 1. A summary of sample plots statistics.

Mean Mean Mean  Slope Soil

(I;Ifur}x;lll;et; ages DBH  height type
(years)  (cm) (m) ")

20 35 242 16 15-25 B3

The basic data, which get from stem analysis,
were transformed into projection format, and the
data structure for all possible growth intervals was
also created with a Statistical Analysis System
(SAS) program for maximum use the data. If n
times record of diameter and height were get, there
are ,C, combinations of different intervals between
time T, and T, that can be derived and used to
build equation.

The methods used for this study were difference
equation (Borders et al., 1984) which has been
used widely for growth and yield modeling studies.
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The main standard statistical procedures used were
non-linear least-squares regression based on PROC
NLIN in Statistical Analysis System (SAS Inc,
1990). Among the algorithms of PROC NLIN
procedures used to estimate parameters the derivative
-free method (DUD), which was found to be best
in convergence, was adopted for non-linear least-
squares regression (Ralston and Jennrich, 1979).

The PROC UNIVARIATE procedure was also
used to examine the residuals and provide several
statistics that are valuable for making inferences
about residuals patterns. The important values
utilized in the analysis of this study were such as
mean of residuals, skewness, kurtosis and extreme
values. In addition, graphical charts and plots were
used to check the distributions of residuals with
regard to normality of errors. Residual errors were
plotted against predicted values to determine good -
ness of fit. Because whether or not the residual
patterns lay normally about the zero references line
was the important criterion for judging the indepen -
dent distribution.

The commonly adopted projection equations are
log-reciprocal (Schumacher, 1939; Woollons and

Wood, 1992), Chapman-Richard (Piennar and
Turnbull, 1973; Goulding, 1979), Gompertz (Whyte
and Woollons, 1990), Weibull (Yang ez al., 1978;
Goulding and Shiley, 1979) and Hossfeld (Liu Xu,
1990). There are two types of projection functions
used for tree growth models, namely anamorphic
and polymorphic functions. Firstly, several frequently
used and their accuracy of estimation proved anamor -
phic equations were assayed such as Schumacher,
Chapman-Richard, Hossfeld and Gompertz functions.
The functional forms of anamorphic projection
equations used are presented in Table 2. Then, poly -
morphic forms of Schumacher, Chapman-Richard,
Hossfeld and Gompertz equations were fitted to the
data. The functional forms of polymorphic projection
equations are presented in Table 3.

RESULTS AND DISCUSSION

1. Prediction of diameter growth projection
function

Most anamorphic equations generally produced
biased

anamorphic function proved little bit superior in

residuals patterns, though Schumacher

Table 2. General form of anamorphic projection equations applied to data.

Equation name

Equation Forms*

Schumacher anamorphic
Hossfeld anamorphic
Chapman-Richards Anamorphic
Gompertz anamorphic

Y: = Yiexp (- B(YT” - YT27))

Y2 = (YY) + BT - YTy
Y2 = Yi((1-exp(- 8T2) / (1 -exp(- BT’
Yz = Y1 exp( - B(exp(y T2) - exp( 7 T1)))

*Y, = Diameter and height of trees at age T:
Y: = Diameter and height of trees at age T:
a, B, y are coefficients to be estimated

Exp = exponential function
In = natural logarithm

Table 3. General form of polymorphic projection equations applied to data.

Equation name Equation Forms*

Schumacher Yz = exp (In (Y1) (TYT)*+a (1l - (TYT)*)

Chapman-Richards Yz = (a/7)"" )1 - (1 - (/)i exp (-7 (1 - B) (T2 - TH"?)
Gompertz Y: = exp (In (Y)) exp (-8 (T2 - T)) +7 (T-T/) +a(1- exp(- B(To-Ty) +7 (TL-TH))
Hossfeld Yz = (/Y1) (TyT)” + (Y a) (1 - (TYT2)"))
* Y, = Diameter and height of trees at age T, Exp = exponential function

Y: = Diameter and height of trees at age T
a, B, 7 are coefficients to be estimated

In = natural logarithm
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Table 4. Statistics of residuals with the anamorphic equations fitted to data.
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Equation name MSE Mean of residuals Skewness Kurtosis
Schumacher 5.3359 0.4643 0.3367 1.6460
Chapman-Richard 5.3871 0.4620 0.3561 1.6074
Hossfeld 26.6864 3.3304 0.3720 1.1947
Gompertz 15.9265 1.6261 0.0182 1.1408

statistics of residuals and residuals patterns to other
anamorphic functions. The statistics of residuals of
the anamorphic equations fitted are presented in
Table 4 with corresponding mean square error values
(MSE).

A plot of residuals against predicted values for
Schumacher equation, which is proved fitting well
among the anamorphic functions, shown in Figure
1 that fitted unsatisfactory with apparent bias. The
mean of the average residuals was 0.46 Cm, which
represents a slight underestimation and an absolute
residual of 1.62 Cm which means that the equation
would predict diameter with an average error of
1.62 Cm. Skeweness and kurtosis values were 0.34

and 1.65, respectively.

RESID

Then, polymorphic forms of Schumacher, Chapman
-Richard, Hossfeld and Gompertz equations were
fitted to the data. Most of the polymorphic equations
generally fitted well without apparent bias, except
Gompertz function that showed bias, in residuals
pattern and showed better fit than anamorphic forms
of equations. In the Chapman-Richard function, the
confidence interval of the coefficients of 2 and y
were not significant at the # = 0.05. Comparing
residuals pattern and mean square error values, the
Schumacher polymorphic function, equation (1), with
mean square error (MSE) 1.840 was found to repre -
sent better than the other equation. The fitted coeffi -
cients and mean square error are shown in Table 5.
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Figure 1. A plot of residuals against the predicted for diameter anamorphic projection equation.
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Table 5. Coefficients for polymorphic equation fitted

to data.
Coefficients
Model Name MSE
a B 7
Schumacher 3.830 0.742 - 1.840
Chapman-Richards  5.812 -0225 0.039 4.804
Gompertz 15.357 0.002 -0.001 17.096
Hossfeld 28.507 - 1.828 2.439

A plot of residual values against predicted values
is given in Figure 2. A plotting of residuals against
predicted values indicated that a random pattern
around zero with little biased trend. An absolute
residual of 0.98 Cm which means that the equation
would predict diameter with an average error of
0.98 Cm. PROC UNIVARIATE in SAS showed
that residual statistics were satisfactory as it con-
tained -0.66 value for skewness and 1.41 value for
kurtosis. The skeweness and kurtosis of a normal
distribution is zero, but in practice values of these

lesser or greater than zero result from least-square

regression. A Shapiro-Wilk test for normality was .

totally accepted as 0.95 that is very closed to 1 of
normal distribution.

2. Prediction of height growth projection
function
The anamorphic and polymorphic functions were
applied, such as the log-reciprocal equation, Chapman
-Richards, Gompertz and Hossfeld. The fitted coeffi -
cients and mean square errors are shown in Tables
6 and 7.

Table 6. Coefficients for anamorphic equation fitted

to data.
Coefficients
Model Name MSE
a B 7
Schumacher - 8.6936 0.3692 4.2120
Chapman-Richards - 0.0447 -1.7735 4.2830
Hossfeld - -6.9687 1.6386 27.3819
Gompertz - 0.0305 -0.8984 24.0461

Table 7. Coefficients for polymorphic equation fitted

to data.
Coefficients
Model Name MSE
a B b4
Schumacher 4.1287 0.5218 - 2.0369
Chapman-Richards 3.2040 0.6927 1.3113 4.4803
Gompertz 3.1794 0.0916 0.008 1.5958

Hossfeld polymorphic 22.5543 - 1.8221 1.8860
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Figure 2. A plot of residuals against the predicted for diameter polymorphic projection equation.
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Most anamorphic equations showed to be unsuit -
able with residuals patterns, while the Scumacher
equation had the lowest mean square errors (MSE)
value, which has been used as first option for
selecting the best fitting model because the equation
with the least biased residuals patterns has been
found to have the lowest MSE vales, among the
anamorphic equations. And had lower mean square
errors than the Gompertz and Hossfeld polymorphic
functions.

None of the asymptotic 95% confidence intervals
of each coefficient contained zero that means the
coefficients are significant at the o= 0.05 level.
However, the confidence interval of the coefficient
y of the Chapman-Richard polymorphic equation
was not significant at this level. Therefore, the
Gompertz polymorphic function, equation (2), that
has the lowest MSE (1. 5958) value was found to
represent the best fit.

H; = exp (In (H) exp (-8(TT) +7 (T~T)
+a (1- exp(- B (T-Ty) +7 (T-T)))
@
The data were evidently well balanced with no
apparent bias or systematic patterns and showed
goodness of fit as shown in Figure 3.

The PROC UNIVARIATE statistics in Table 8
shows proof that the equation provides an unbiased
precise estimate of height as it contained -0.361
value for skewness which indicated little bit long
tails to the left and 0.924 value for kurtosis, the
heaviness of tails in a distribution. A Shapiro-Wilk
test for normality was totally accepted as 0.980 that
is very closed to 1 of normal distribution. The mean
of the average residuals was 0.03 m, which represents
a slight underestimation and an absolute residual of
0.96 m that means that the equation would predict
height with an average error of 0.96 m.

Table 8. Summary of statistics of residual values for
height projection equation.

Statistics Name Values
Mean 0.0365
Absolute mean 0.960
Skewness -0.3621
Kurtosis 0.9236
W : Normal 0.9890
CONCLUSIONS

It showed that the Schumacher and the Gompertz
polymorphic projection equations provided satisfac -
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Figure 3. A plot of residuals against the predicted for height polymorphic projection equation.
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tory predictions of the diameter and height growth,
respectively for Pinus densiflora Sieb. et Zucc.
grown in Beonsan peninsular of Cheonbuk province.
This was ensured by comparing the respective resid -
ual mean squares values as well as better residual
patterns and residual statistics. It is unrealistic to
expect a unique function to perform consistently
better than others with forest growth and yield data.
Because the best function is changed with what
kind of data are being used. And the initial selection
of appropriate equations is most important for
success of the goodness of fit modes. In order to
allow more precise estimations than those of above
the basic Schumacher and the Gompertz further
study that combines biological realism as input into

an empirical equation will be required.
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