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(A Simple Analytic Method of Optical DFB Waveguides
with Quarter-Wavelength Shifted Region)
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Abstract

We evaluate the optical characteristics of planar distributed feedback (DFB) waveguides with
quarter-wavelength phase-shifter. To analyze explicitly its band-pass and resonance properties, we
present and newly develop a modal transmission~line theory (MTLT) based on Floquet’s theorem
and Babinet’s principle. The numerical results reveal that this approach offers a simple and analytic
algorithm to analyze either the filtering or the oscillating characteristic of DFB gratings with
quarter-wavelength phase-shifter, and has a novel physical insight that may not be achieved in

Eteam 5t

other approximating approaches

1. Introduction

Kogelnik and Shark™ have proposed distributed-
feedback (DFB) guiding structures for the applications
of integrated optics. The geometry may act as mirrors
or filters operating at optical wavelength, and be
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incorporated in most of the optoelectronic devices
because of the frequency-selective property applicable
to optical communications. The transmission charac—
teristic is really a stop-band filter rather than a
pass—band filter.
However, in many applications, the optical
transmission system practically requires a channel-
dropping function, in which a narrow channel is
selected from large spectrum of designed channels, If
one spaces two periodic structures by one (or an odd
muiltiple of) quarter wavelength, it is possible to achieve
an optical filter served as pass-band transmitter.
Furthermore, the DFB grating having a discrete
phase-shift region at the center of two DFB gratings
generates a single resonance mode while one without

phase-shift region has two-mode oscillation property.
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This means the fact that the spacer to keep a track of
phase shift will form an effective resonator inside the
optical path, and thus affect the device operation

To acquire and analyze numerically the design
parameters suitable to the single mode transmission at
long-haul optical commumication, many approaches’> ™
have claimed themselves capability. One of those
candidates used widely is coupled-mode theory (CMT).
Although this approach can be applied to more general
guiding structures, it becomes too complicated and
laborious when carrying out the numerical analysis of
configurations cascaded by DFB guides with different
grating profiles. On the contrary, the transfer matrix
method (TMM), which is a famous candidate of very
competitive simplified methods, still gives us an
excellent computational algorithm to evaluate the DFB
gratings composed by multiple-sections. However, it
does not supply the physical insight in detail of modal
fields distributing and traveling at the DFB guides with
phase-shifter.

One way to overcome those disadvantages is to use
such an analogous approach, which is called modal
transmission-line theory (MTLT)" and satisfies the
pertinent boundary conditions of Maxwell’s equations.
To achieve this objective, in Section 2 of this paper we
present a simple and newly developed MTLT using
Floquet's theorem™ and bisection principle (Babinet’s
theorem)® to analyze the optical filtering and
oscillating characteristics of phase~shifted DFB guiding
profiles. In addition, the oscillating property of a single
TE resonance mode is explicitly investigated and
discussed in Section 3. Consequently, we give the
conclusive remarks in Section 4.

0. Modal Characteristics of Newly
Deveioped MTLT

1. Equivalent Propagation Constant

A quarter-wavelength phase-shifted DFB guide is
schematically shown in Fig. 1(a). This device consists
of two Bragg gratings separated by a spacer whose
length represents exactly half the period of the Bragg
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gratings. The substrate layer is composed of a material
To determine the design parameters for practical
application, we develop a simple and newly developed
MTLT based on the equivalent propagation constant
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Fig. 1. A symmetric DFB guiding structure with a
finite number N of gratings depicted by (a)
a plane of geometry, and (b) the equivalent
network.
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Equivalent transmission-line networks (a)
for each section of unit-cell, (b) for a
symmetric unit-cell, (c) satisfying Floquet's
theorem.

Fig. 2.
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Keq and characteristic impedance Z,,, which describes
the modal effect of multi-layered periodic guiding
structures. This defined modal representation is then
evaluated by conventional transmission-line considera-
tions satisfying the boundary conditions of Maxwell’s
equations, as depicted in Fig. 1(b). Figure 1(b) shows

_that the DFB regions with grating length L,=N,A/2

and L,= N,A/2 can be analogous to transmission-line
blocks with the equivalent modal components of
periodic guiding structures and the other regions
including phase-shifter
constituent blocks of stratified guides. Thus, the
quarter-wavelength phase-shifted DFB guide acts as a
transmission-line network with five blocks.

be replaced by uniform

Assuming that a plane wave with operating
wavelength A=0.86¢m is incident from the left-hand
side of guiding structure, we then construct an
equivalent transmission-line network for the symmetric
unit-cell with input ( v,,) and output ( V,,,) terminal
voltages describing the amplitudes of the guiding fields,
as shown in Fig. 2. From Fig. 2(a) it is easy to
understand intuitively that the DFB guide is comprised
by a series of symmetric unit-cells with length
A=A+ A,. Consequently, we can determine well the
local propagation constants k1, x2 for each segment
having length A,/2 and A, if we use the transverse

resonance condition of MTLT™
Yup + de = O (1)

where Y, and Y, represent the input admittances
when looking up and down at an arbitrary point on the
x—axis, respectively. As explicitly known at the modal
representation of MTLT, the characteristic impedance
Z,, of each segment is then related to the propagation

constant x as follows:

o for TE modes

1
777

for TM modes @)

o-'m

with m=1, 2. Also, the input-output relation between

three transmission-line blocks becomes

V()ur I/in
=TT, >
Iout ]in (3)

where Th is the transfer matrix of the m—th block

which vields
0
cos(k,d,) iZ,sin(k,d,)
- i¥, sin(x,d,) cos(x,d,)

and d,, is the length of each transmission-line block
given by dy=4,/2,dy=A,. Then, the symmetric
unit-cell network can be expressed by an equivalent
network with equivalent propagation constant Keg
satisfying Floquet's theorem, which states the fact that
periodic structures have a solution which consists of an
exponential factor multiplied by a periodic function of
period A. Figure 2(c) presents the equivalent network
obtained by Floquet's exponential solution with
equivalent propagation constant Keq. Then, the output
components are related to the input components as
follows:

Vo exp(i xqu) 0 |
L) | 0 exlix,A) IJ @

Accounting for the consistence of Egs. (3) and (4), we

obtain a dispersion relation

cos(Kqu)= cos(x; A, Jeos(ic, A, )

-1[51+—ZLJsin(xlA, Jsin(x,A,) . 5

2| z, " z,

Consequently, the eigenvalue problem above may be
numerically calculated to analyze such optical
characteristics as the pass—band filtering or the single
mode oscillation of quarter-wavelength phase-shifted
DFB guides based on semiconductor materials with

gain or loss.

2. Equivalent Characteristic Impedance
In previous subsection, we have derived the
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propagation constant Ke, of equivalent transmission-
line network identifying DFB guiding regions. However,
to explore the filtering characteristics of DFB guiding
structure, we must define newly the characteristic
impedance Z,, of the equivalent network because the
characteristic impedance of periodic guiding structures
is not such simply related to the propagation constant
as Eq. (2) being supported only at the stratified guiding
structures. To implement the equivalent blocks of
quarter-wavelength DFB guides, we apply bisection
principle (called Babinet's principle) to a symmetric
plane of the sectored network shown in Fig 2(b). The
bisection principle implies that the fields on the
source-free guides of a closed surface are completely
determined by stating the values of tangential
electricand magnetic fields on either one portion or the
remainder of the surface. If a magnetic (or electric)
conducting wall for TE (or TIM) modes is then placed
at the symmmetric plane, the bisected equivalent network
is terminated by open-bisection or short-bisection
dependent on even or odd modes as shown in Fig. 3.
This results in the input impedance

& 3. Babinet%il?— o A
e} o) 5, (b) B o] 5¢

Fig. 3. Network conﬁguratlons satlsfying Babinet's
theorem terminated by (a) open-bisection
(0.b.), and (b) short-bisection (s.b.).
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z, Ztan( 1)t (2A2)
Zob=iZ K
Z, tan(—*-2 2)+Z tan( ) ®)
for open-bisection, and
Ztan(‘ 1)+ Z, tan (2 2)
Z,=~iZ,
z,-Z, a2 ‘)tan( As @

(885)
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for short-bisection, where the subscript ob and ob

stand for open-bisection and short-bisection,
respectively.  Then, characteristic
impedance for a svmmetric unit-cell of DFB guiding

regions can be expressed as

the equivalent

Z ZobZ:b

@&

eq:

Consequently, the equivalent transmission—-line network
developed newly by the equivalent propagation constant
of Eq. (5) and characteristics impedance of Eq. (8) can
systematically serve to analyze the optical properties of
DFB guiding structures, as will be discussed in detail
below.

3. Modal Transmission-Line Equations

As mentioned before, although such some simplified
methods as CMT and TMM give us simplicity and
convenience like the equivalent network approach
proposed in this paper, they have serious disadvantages
when analyzing the physical insight of modes
propagating along with the multi~sectional periodic
guiding structures. On the other hand, our approach is
governed by general transmission-line equations whose
modal parameters are analogous to the wave equations
of uniform electric and magnetic fields incident into
DFB guides. Thus, the equivalent network depicted in
Fig. 1(b) acts as a quarter-wave impedance transfor-
mer, which can characterize completely the design
concepts and treat easily in basic electromagnetic
theory.

Each equivalent network presenting DFB and
phase-shift regions then supports a modal voltage for
TE modes, which is expressed as a superposition of
exponentially decreasing and increasing traveling-
waves along z-direction. Assuming that a surface
wave with amplitude V;, is incident into the input
junction terminal z=0, the modal voltage in the
constituent blocks is given by

Vy(2) =V, o Jeo + e ™}
V(2 =V, fehe ) A Tttt for m#0,4

V4(Z) =Vf_4e”‘:_4(:~h‘) (9)
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from conventional transmission-line theory. Here, the
forward-traveling voltage V;, Is the complex
amplitude of modal voltage, and must satisfy the

continuity conditions at all z= #&,, boundaries so that

Etem s

Viz=h) ko
£ ALY ~ | =, .0+ T)e" a2

Similarly, the reciprocal descriptions for TM modes are

we have obtained by expressing the equations for modal
LT ot voltages in Egs. (9)~(12) with those ones for modal
+ e ER
V,y=—21t—— I —— —aurents. In the following r ical discussion, we will
S P e e ‘ . numerical
Vo =1 discuss only the optical properties of TE modes, but we
7 ’ st can extend our approach to evaluate TM modes with no
Vf,m—le Tt (1 + 1"m—l ) tedl k
Vf,m = T — for m>1 ous works,
+1,e """

with a convenient normalization for V,,. Also, the
propagation constants correspond to the equivalent
terms as

form=0,2,4

form=1,3

As already known well, the reflection coefficients
looking to the right at z=#4,, due to the impedance
mismatching between the equivalent blocks may be
determined by

o (A AD LT AL ) VW i
" ik, [
X, +Y, )+, =Y O, &

for m<4 ,

L+¥, (10)

where the characteristic admittances of each trans-
mission-line block stand for

{ 1z
Y, =
1z,

Consequently, we can determine the reflected power

form=0,2,4
form=1,3

Pref = IFOIZP». (11)

for TE modes at input boundary z=0. Subsequently,
using the equations defined above and assuming that
the input power P;, is normalized to unity, the power
P, transmitted through the output boundary z= 44

becomes

M. Numerical Results and
Discussions

The guiding problems of a quarter-wavelength
phase-shifted DFB guide are explicitly and numerically
evaluated by applying conventional transmission-line
considerations based on the corresponding boundary
conditions of Maxwell's equations. As mentioned
already, the equivalent network of Fig. 1(b) is
analogous to a quarter-wave transformer, being a
useful circuit for matching between transmission lines
in microwave engineering area. Thus, for simplicity and
to emphasize the main aspect of interest here, we will
call the quarter-wavelength phase-shifted DFB guide
as a quarter-wave transformer throughout this
numerical analysis.
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Fig. 4. Calculated transmission of DFB grating with
and without A/2 phase-shifter.
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As the first step of numerical evaluation, we treat the
reflected power given by Eq. (11) at the input boundary
when an optical power is incident into a quarter-wave
transformer with or without the phase-shifter. Figure 4
shows that the quarter-wave transformer with no
shifter and length 150 A «m has a peak value at A/i=
04167 for fundamental TE mode, as known well.
Whereas, the quarter-wave transformer with A/2
-shifter and length #=#=150Aum occurs a deep
pole at the normalized wavelength, meaning that the
pass—band property and a single resonance mode exist.

This phenomenon can be explained by the impedance
matching condition of a single-section transformer with
narrow pass—band. The characteristic impedance of the
matching section of a single-section quarter-wave
transformer satisfying the matching condition is

Z=\2,Z, , 13)

where Z, and Z, represent the input impedance
looking to the left at z=k,; and to the right at z= h,,
respectively. Then, the matching condition of Eq. (13)
holds at the resonance frequency of pass-band filter so
that there is no reflection at the input boundary z=0
of Fig. 1(b). However, the condition is no longer
satisfied at the other frequencies and some portions of
the incident power reflect due to the impedance

P,
o S
o

0.417 0.418 0.419

AN ——>
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A

Fig. 5. Calculated transmission of the quarter-wave
transformer along the variation of grating
numbers.
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mismatching. Furthermore, this single~section quarter-
wave transformer can be simply extended to multi~
section geometry and be svnthesized to vield a desired
frequency bandwidth in optical band-pass filter.
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Calculated transmission of the quarter-wave
transformer consisted of two asymmetric
DFB gratings.

Fig. 6.

Next, we examine the variation of transmitted power
along the increase of the number of gratings of two
DFB guiding blocks. As shown in Fig. 5, as the grating
number N; and N, equally increase, the mismatching
values not satisfying the condition of Eqg. (13)
remarkably increase and it causes the bandwidth of
transformer to have narrower pass-band selectivity.
Furthermore, we obtain an interesting result by
exploring the asymmetric property of the two
equivalent blocks. Figure 6 shows that the pass—band
filtering characteristics as well as the quality of
side-lobes gradually degrade along the increasing
amount of the geometrical discrepancy of those guiding
structures. Because the condition given in Eq. (13) for
impedance match is no longer held at the quarter-wave
transformer consisted of two asymmetric DFB gratings.

As stated above, we have analyzed the filtering
properties of passive quarter-wave transformer without
Now, we consider the oscillating
characteristics of active quarter-wave transformer with
gain. Then, the refractive index of the guiding layer is
a complex value like »,=3.64—in/" in which the

gain or loss.
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imaginary refractive index #," describes the gain
component. If the gain overcomes a total loss of
quarter-wave transformer chiefly dependent on the
radiation loss of modes traveling through two DFB
the propagates

attenuation. We refer to this gain value as the

guides, guided wave without

transparency gain, for whlch the recychng wave mSlde

phase “shifter ~heither grow nor decay on each
round-trip. Consequently, the active device begins
constructive oscillation at larger gain values than the
transparency gain, and allows one resonance mode to
oscillate. The detailed spectrums for various gain

values are shown in Fig. 7. This spectral configuration

(2]
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Fig. 7. Oscillation response for the transmitted
power of quarter-wave transformer with the
grating number N;= N,=300.
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Fig. 8. Normalized amplitude of modal voltage
propagating  along the  quarter-wave
transformer.
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gives an excellent illustration describing how a single
oscillating mode emerges just above threshold and a
deep hole casts just below threshold.

Finally, to understand completely the physical insight
of quarter-wave transformer at the resonance condition
(A/2=0.4167), we sketch the power normalized by an
arbitrary scale as a function of propagating dlstance in 7
" Fig. 8 As shown in the fim escaping
from the interfaces between phase shifter and two DFB
gratings exponentially decay, and suffer sinusoidal
ripple-beat pattern due to the discontinuity of grating
facets. The narrower of the peak in Fig. 8 is further
expanded in the insert. The insert shows that the
quarter-wavelength shift of the propagating wave
occurs at the boundaries between phase-shifter and
two DFB gratings rather than at the center of
phase-shifter as mentioned in previous works™™. Such
a behavior is illustrated by sinusoidal dashed-lines in
the insert, and it gives a newly presented insight, that
is, there exists a distribution of modal voltage confined
well within the range of phase-shifter. It is the reason
why a single resonance mode oscillates in the quarter-
wave transformer with gain. To the best of my

knowledge, this is a novel and interesting phenomenon
being reported first in this paper. Thus, we need more
detailed analysis for the modal voltage distributing
along the distance of quarter-wave transformer with
gain or loss. However, we do not present the detailed
discussion in this paper because it is beyond the scope
of this paper. Later we will report those results as a
paper.

IV. Conclusions

In this paper, we have presented a newly developed
analytic approach to evaluate easily and explicitly the
filtering and oscillating characteristics of a quarter-
wavelength phase-shifted DFB guiding structures. The
equivalent network approach is based on Floquet's
theorem and Babinet’s principle used widely in the
design and analysis of devices in microwave engi-
neering field Furthermore, it does not need to run
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tedious numerical programs when solving the compli-
cate eigenvalue problems of the multi-layered and
multi-sectioned DFB  guides. Consequently, these
overall that the extended modal
transmission-line theory is served as a convenient and
powerful analytic algorithm for the design and analysis
structures in  optical

communication, even no matter whether it contains

results  reveal

of planar DFB guiding

materials with gain or loss.
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