SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향

Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends

  • 이의환 (서강대학교 공과대학 화학공학과) ;
  • 남기준 (서강대학교 공과대학 화학공학과) ;
  • 이재욱 (서강대학교 공과대학 화학공학과)
  • Lee, Ui-Hwan (Department of Chemical Engineering, Sogang University) ;
  • Nam, Gi-Jun (Department of Chemical Engineering, Sogang University) ;
  • Lee, Jae-Uk (Department of Chemical Engineering, Sogang University)
  • 발행 : 2001.07.01

초록

섬유강화 복합재료의 물성을 결정하는 주요 인자중 하나는 계면결합력이다. 본 연구에서는 유리섬유와 PC/SAN 블렌드를 대상으로 하여 계면결합력을 측정하였으며 SAN함량을 0-30 wt%까지 변화시켜 실험하였다. 계면결합력 측정에는 Single Fiber Fragmentation Test법을 사용하였는데 SAN 함량이 증가할수록 계면결합력이 증가하였다. 한편 계면결합력을 증가시키기 위해 PC/SAN 혼련물을 개질하고자 소량의 SMA를 혼합하였으며, 유리섬유 표면을 실란 커플링제로 처리하여 관능기를 도입하였다. 계면결합력은 SAN/SMA계의 상용성에 크게 영향을 받았으며, 비상용성 SAN/SMA계보다 상용성 SAN/SMA계에서 계면결합력이 증가하였다. 또한 상용성 SAN/SMA계에서는 계면결합력이 SMA 내의 MA 함량이 아닌 전체 계내의 MA 함량에 의존하였으며 그 최적 함량은 0.4wt%였다.

One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.

키워드

참고문헌

  1. J. Appl. Polym. Sci. v.25 M. Miwa;T. Ohsawa'K. Tahara
  2. J. Mech. Phys. Solids v.13 A. Kelly;W. R. Tyson
  3. Application of Surface Science v.4 G. E. Hammer;L. T. Drzal
  4. J. Phys. D. Appl. Phys. v.6 A. Takaku;R. G. C. Arridge
  5. Modern Composite Materials L. J. Broutman;R. H. Krock(Eds.)
  6. Applied Chem. Division, AERE, Harwell, Report No. R8683 no.8683 J. D. H. Hughes
  7. Polymer v.28 M. J. Folkes;W. K. Wong
  8. Polym. Sci. and Tech. v.2 C. K. Moon;H. H. Cho;J. O. Lee
  9. J. Mat. Sci. Lett. v.7 k. P. Mcalea;G. J. Besio
  10. Polymer(Korea) v.16 C.-K. Moon
  11. Composite v.25 J. L. Thomason;G. E. Schoolenberg
  12. Composite v.23 P. J. Herrera-Franco;L. T. Drzal
  13. J. Mater. Sci. v.29 D. T. Grubb;Z. F. Li
  14. J. Mater. Sci. v.29 Z. F. Li;D. T. Grubb
  15. Polym. Eng. Sci. v.31 M. R. Piggor;S.E. Dai
  16. Polymer(Korea) v.19 S. M. Kang;M. C. Lee
  17. Journal of Adhesion v.19 W. D. Bascom;R. M. Jensen
  18. Polymer v.28 M. J. Folkes;W. K. Wong
  19. Polym. Compos. v.9 M. Narkis;E. J. H. Chen
  20. Polym. Compos. v.10 A. N. Metravali;P. Schwartz
  21. Polym. Eng. Sci. v.29 A. T. Dibendetto;P. J. Lex
  22. Analysis and Performance of Fiber Compositres B. D. Agarwal;L. J. Broutman
  23. Polym. Eng. Sci. v.28 W. N. Kim;C. M. Burns
  24. J. Appl. Polym. Sci. v.29 J. D. Keitz;J. W. Barlow;D. R. Paul
  25. Polym. Compos. v.12 H. F. Wu;G. Biresan;J. T. Laemmil
  26. SPE ANTEC Tech. Papers v.39 H. G. Karian;H. R. Wagner
  27. Polymer v.25 D. R. Paul;J. W. Barlow
  28. Polymer v.28 M. Suess;J. Kressler;H. W. Kammer
  29. Macromolecules v.19 T. Shiomi;F. E. Karasz;W. J. Macknight
  30. Ph. D. Thesis, Sogang University J. S. Lee
  31. Polym. Sci. Tech. v.3 J. Y. Cha;H. C. Kwon
  32. Plastic Material(5th Ed.) J. A. Brydson
  33. J. Appl. Polym. Sci. v.54 B. S. Lombardo;H. Keskkula;D. R. Paul