Inverse Suspension Polymerization of Acrylamide

아크릴아미드의 역상 현탁중합

  • Lee, Ki-Chang (Department of Polymer Sci. and Eng., & RITT, Gyeongsang National University) ;
  • Song, Bong-Keun (Pulp and Paper Research Lab., Korea Institute of Chemical Technology) ;
  • Lee, Dong-Joo (Department of Polymar Sci. and Eng., Inha University)
  • 이기상 (경상대학교 공과대학 고분자공학과 & 생산기술연구소) ;
  • 송봉근 (한국화학연구원 펄프${\cdot}$제지 연구실) ;
  • 이동주 (인하대학교 공과대학 고분자공학과)
  • Published : 2001.07.01

Abstract

Inverse suspension polymerization of acrylamide (AM) in cyclohexane was carried out to study the effects of concentrations of sorbitan ester (Span) stabilizers and 2,2'-azobis (2-methyl propionamidine) dihydrochloride (AIBA) initiator, amount of monomer, shaking speed, and polymerization temperature on the particle size of the resulting poly (acrylamide) (PAM) beads and their molecular weights. It was found that the particle diameter. in general, decreased with increasing concentration of stabilizer, shaking speed, and water content in the aqueous phase, and with decreasing concentration of initiator and polymerization temperature. The average molecular weight of the resulting PAM beads was also found to increase with increasing concentrations of monomer and stabilizer, and also with decreasing concentration of initiator, polymerization temperature, and water content in the aqueous phase. In this study, PAM beads ranging 2 ~ 50 ${\mu}$m in diameter, with 8000000 ~ 12000000 in the weight average molecular weight were successfully prepared in almost 100% conversion.

Sorbitan ester(Span)와 2,2'-azobis(2-methyl propionamidine) dihydrochloride(AIBA)를 각각 입자안정제와 개시제로 사용하여 cyclohexane 분산매에서 acrylamide (AM)의 역상 현탁중합을 다양한 중합 조건하에서 수행하여 생성되는 poly(acrylamide)(PAM) 현탁입자의 입자경, 평균분자량, 수용화도 등을 조사하였다. 일반적으로 PAM 현탁입자경은 입자안정제의 농도, 진탕속도, 수용상 성분 중 물의 양이 증가함에 따라, 또는 개시제의 농도, 중합 온도가 감소함에 따라 감소하였다. PAM 현탁중합체의 평균분자량은 단량체의 농도, 입자안정제의 농도가 증가함에 따라, 또는 개시제의 농도, 중합 온도, 수용상 성분중 물의 농도가 감소함에 따라 증가하였다. 본 연구에서 얻어진 PAM 현탁입자는 구슬형의 약 2 ~ 50 ${\mu}$m 범위의 입자경과 약 800 ~ 1200만의 중량평균분자량을 나타내었다.

Keywords

References

  1. Water-Soluble Polymers: Recent Developments Y. L. Meltzer
  2. Polyelectrolyte:Formation, Characterization, and Application H. Dautzenberg;W. Jaeger;J. Kotz;B. Philipp;Ch. Seidel;D. Stscherbina
  3. Makromol. Chem. Makromol. Symp. v.35 no.36 P. Trijasson;T. Pith;M. LAmbla
  4. Scientific Mathods for the Study of Polymer Colloids and Their Application F. Candau;F. Candau;R. H. Ottewill
  5. Ph.D. Thesis, Lehigh University Formation and Stabilization of Inverse Emulsion Polymers D. L. Visioli
  6. Encyclopedia of Polymer Science and Technology v.13 E. Farber;H. M. Mark
  7. JMS-Rev. Macromol. Chem. Phys. v.C31 H. G. Yuan;G. Kalfas;W. H. Ray
  8. Polymer(Korea) v.23 no.2 B. J. Chang;I. S. Oh;J. I. Kim;H. J. Joo
  9. J. of Korea Ind. & Eng. Chemistry v.6 no.6 K. Y. Lee;K. S. Kim;Y. U. Moon;J. S. Shin
  10. J. Appl. Polym. Sci. v.65 G. Wang;M. Li;X. Chen
  11. J. Appl. Polym. Sci. v.50 F. Askari;S. Nafish;H. Omidian;S. A. Hashemi
  12. J. Dispersion Science and Technology v.18 no.2 J. Snuparek;V. Cermak
  13. J. Appl. Polym. Sci. v.73 S. Kiatkamjornwong;N. Siwarungson;A. Nganbusri
  14. McCutcheon's Emulsifiers & Detergents(1996 North American Edition)
  15. Principles of Polymerzation G. Odian
  16. Advances in emulsion Polymerization and Latex Technology Polymeric Stabilization D. H. Napper