Application to Generation Expansion Planning of Evolutionary Programming

진화 프로그래밍의 전원개발계획에의 적용 연구

  • 원종률 (전력연구원 전력계통연구실)
  • Published : 2001.04.01

Abstract

This paper proposes an efficient evolutionary programming algorithm for solving a generation expansion planning(GEP) problem known as a highly-nonlinear dynamic problem. Evolutionary programming(EP) is an optimization algorithm based on the simulated evolution (mutation, competition and selection). In this paper, new algorithm is presented to enhance the efficiency of the EP algorithm for solving the GEP problem. By a domain mapping procedure, yearly cumulative capacity vectors are transformed into one dummy vector, whose change can yield a kind of trend in the cost value. To validate the proposed approach, this algorithm is tested on two cases of expansion planning problems. Simulation results show that the proposed algorithm can provide successful results within a resonable computational time compared with conventional EP and dynamic programming.

Keywords

References

  1. S. T. Jenkins and D. S. Joy, Wien Automatic System Planning Package (WASP) - An Electric Utility Optimal Generation Expansion Planning Computer Code, Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL 4945, 1974
  2. IAEA, Expansion Planning for Electrical Generating Systems - A Guidebook, Technical Reports Series No. 241, Nov., 1984
  3. Electric Power Research Institute (EPRI), Electric Generation Expansion Analysis System (EGEAS), EPRI EL-2561, EPRI, Palo Alto, CA , 1982
  4. P. Feintuch, 'Power system expansion planning at EDF,' International Journal of Electric Power & Energy Systems, Vol. 5, No. 2, April, pp. 115-119, 1983 https://doi.org/10.1016/0142-0615(83)90015-7
  5. N. Levin and J. Zahavi, 'Optimal Mix Algorithms with Existing Units,' IEEE Trans. on Power Apparatus and Systems, Vol.PAS-103, No.5, May, 1984 https://doi.org/10.1109/TPAS.1984.318698
  6. A. Ramos, I. J. Peres-Arriaga, and J. Bogas, 'A nonlinear programming approach to optimal static generation expansion planning,' IEEE Trans. on Power Systems, Vol. 4, No. 3, pp. 1140-1146, 1989 https://doi.org/10.1109/59.32610
  7. F. Noonan and R. J. Giglio, 'Planning electric power generation: A nonlinear mixed integer model employing Benders decomposition,' Management Science, Vol. 23, No. 9, pp. 946-956, 1977
  8. J. A. Bloom, 'Long-range generation planning using decomposition and probabilistic simulation,' IEEE Trans. on Power Apparatus and Systems, Vol. 101, No. 4, pp. 797-802, 1982 https://doi.org/10.1109/TPAS.1982.317144
  9. Y. M. Park, K. Y. Lee, and L. T. O. Youn, 'New analytical approach for long-term generation expansion planning based maximum principle and Gaussian distribution function,' IEEE Trans. on Power Apparatus and Systems, Vol. 104, pp. 390-397, 1985 https://doi.org/10.1109/TPAS.1985.319054
  10. 박영문, 박종배, 원종률, '개선된 유전 알고리즘을 이용한 최적 전원개발계획,' 대한전기학회 논문지, Vol.44, No.6, p.691-697, 1995.6
  11. 박영문, 박종배, 원종률, '유전 알고리즘의 전원개발계획에의 적용 연구,' 대한전기학회 논문지, Vol.44, No.10, p.1274-1282, 1995.10
  12. Y. Fukuyarra and H Chiang, 'A parallel genetic algorithm for generation expansion planning,' IEEE Trans. on Power Systems, Vol. 11, No. 2, pp. 955-961, 1996 https://doi.org/10.1109/59.496180
  13. Y M. Park, J. B. Park, and J. R. Won, 'A genetic algorithms approach for generation expansion planning optimization,' IF AC Symposium on Control of Power Plants and Power Systems, Vol. 1, pp. 121-126, 1995 https://doi.org/10.1109/59.871713
  14. Y. M. Park, J. B. Park, J. R. Won, 'A hybrid GA/DP approach to optimal long-term generation expansion planning,' International Journal of Electrical Power and Energy Systems, Vol. 20, No. 4. pp, 295-303, 1998. 5
  15. J,B.Park, YM.Park, J,R.Won, K.Y.Lee, 'An Improved Genetic Algorithm for Generation Expansion Planning,' IEEE Trans. on Power Systems, Vol. 15, No.3, pp, 916-922, 2000. 8 https://doi.org/10.1109/59.871713
  16. Dimitri P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall Inc., 1987
  17. E. N. Oatman and L. J, Hamant, 'A dynamic approach to generation expansion planning,' IEEE Trans. on Power Apparatus and Systems, Vol. 92, pp. 1888-1897, 1973 https://doi.org/10.1109/TPAS.1973.293568
  18. W. D. Dapkus and T. R. Bowe, 'Planning for new electric generation technologies - A stochastic dynamic programming approach,' IEEE Trans. on Power Apparatus and Systems, Vol. 103, No. 6, pp. 1447-1453, 1984 https://doi.org/10.1109/TPAS.1984.318482
  19. G. W. Evans and T. L. Morin, 'Hybrid dynamic programming / branch-and-bound strategies for electric power generation planning,' IIE Transactions, June, pp. 138-147, 1986
  20. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975
  21. J. J. Grefenstette, 'Optimization of control parameters for genetic algorithms,' IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-16, Jan./Feb., pp. 122-128, 1986 https://doi.org/10.1109/TSMC.1986.289288
  22. D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley Publishing Company, Inc., Massachusetts, 1989
  23. D. B. Fogel, 'An Introduction to Simulated Evolutionary Optimization,' IEEE Trans. on Neural Networks, vol. 5, pp. 3-14, Jan. 1994 https://doi.org/10.1109/72.265956
  24. Hong-Tzer Yang, Pai-Chuan Yang, Ching-Lien Huang, 'Evolutionary Programming Based Economic Dispatch for Units with Non-smooth Fuel Cost Functions,' IEEE Trans. on Power Systems, Vol.11, No.1, 1996, pp.112-118 https://doi.org/10.1109/59.485992
  25. L. L. Lai, J. T. Ma, 'Application of Evolutionary Programming to Reactive Power Planning Comparison with Nonlinear Programming Approach,' IEEE Trans. on Power Systems, Vol.12, No.1, 1997, pp. 198-206 https://doi.org/10.1109/59.574940
  26. 홍길동, 김유신, '2상8극형 HB형 리니어 펄스 모터의 자속분포와 정특성해석,' 대한전기학회 논문지, 9호, 제 42권, pp. 9-18, 1993. 9
  27. Hayes, JP., 'Pseudo-Boolean Logic Circuits,' IEEE Trans. Computers, vol. C-35, no. 7, pp. 602-612, July 1988
  28. Y. Fukuyama and H. Chiang, 'A parallel genetic algorithm for generation expansion planning,' IEEE Trans. on Power Systems, Vol. 11, No. 2, pp. 955-961, 1996. https://doi.org/10.1109/59.496180